Crash Course for NEET 2020

KEY NOTES ON ELECTROCHEMISTRY

Biomentors Classes Online, Mumbai

NCERT Based - Very Important Points

Copyright Reserved with Biomentors; Please do not redistribute the content

Electrochemistry :

It is the study of production of electricity from energy released during spontaneous chemical reactions and the use of electrical energy to bring about non-spontaneous chemical transformations.

Differences between electrochemical cell and electrolytic cell :

Electrolytic cell
1. It is a device which converts electrical energy into
chemical energy.
2. The redox reaction is non-spontaneous and takes place
only when electrical energy is supplied. <i>i.e.</i> , $\Delta G = +ve$
3. Both the electrodes are suspended in the solution or
melt of the electrolyte in the same beaker.
4. Only one electrolyte is taken.
5. The electrodes taken may be of the same or different
materials.
6. The electrode which is connected to the –ve terminal
of the battery is called the <i>cathode</i> ; the cations migrate
to it which gain electrons and hence, a reduction takes
place, the other electrode is called the anode.

1. Faraday's -first law of electrolysis : The amount of chemical reaction which occurs at any electrode during electrolysis by a current is proportional to the quantity of electricity passed through the electrolyte (solution or melt).

 $w \propto Q$ or $w = ZQ = Z \times I \times t$

Where Z is the electrochemical equivalent of the substance deposited and

 $Z = \frac{Eq.Wt \, of \, Substance}{96500}$

2. Faraday's second law : It states that,

"When the same quantity of electricity is passed through different electrolytes, the masses of different ions liberated at the electrodes are directly proportional to their chemical equivalents (Equivalent weights)." i.e.,

$$\frac{W_1}{W_2} = \frac{E_1}{E_2} \text{ or } \frac{Z_1 I t}{Z_2 I t} = \frac{E_1}{E_2} \text{ or } \frac{Z_1}{Z_2} = \frac{E_1}{E_2} \qquad (\because W = Z I t)$$

Thus the electrochemical equivalent (Z) of an element is directly proportional to its equivalent weight (E), *i.e.*,

 $E \propto Z$ or E = FZ or $E = 96500 \times Z$

where, $F = Faraday constant = 96500 C mol^{-1}$

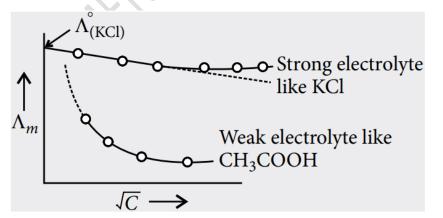
So, 1 Faraday = 1*F* =Electrical charge carried out by one mole of electrons.

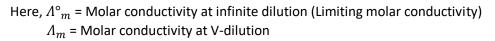
1F = Charge on an electron × Avogadro's number.

 $\mathbf{1F} = e^{-} \times N = (1.602 \times 10^{-19} c) \times (6.023 \times 10^{23} mol^{-1}).$

Number of Faraday = $\frac{\text{Number of electrons passed}}{6.023 \times 10^{23}}$

Conductance in electrolytic solutions :


Property	Formula	Units	Effect of dilution
roperty	ronnuta	Ontes	Effect of dilution
Conductance (<i>G</i>)	$\frac{1}{R} = \frac{a}{\rho l} = \frac{\kappa a}{l}$	$Ohm^{-1} (\Omega^{-1})/Siemens (S)$	Increases as larger number of ions are produced.
Specific conductance (κ) or conductivity	$\frac{1}{\rho}$ or $G\frac{l}{a}$	$Ohm^{-1} cm^{-1}/S m^{-1}$	Decreases as number of ions per cm ³ decreases.
Equivalent conductivity (Λ_{eq})	$\kappa \times V \text{ or} \\ \kappa \times \frac{1000}{N}$	$\Omega^{-1} \ cm^2 \ eq^{-1} / S \ m^2 \ eq^{-1}$	Increases with dilution due to large increase in <i>V</i> .
Molar conductivity (Λ_m)	$\kappa \times V \text{ or} \\ \kappa \times \frac{1000}{M}$	$\Omega^{-1} \ \mathrm{cm^2 \ mol^{-1}}/\mathrm{S} \ \mathrm{m^2 \ mol^{-1}}$	Increases with dilution due to large increase in <i>V</i> .


Limiting molar conductivity

When concentration approaches zero i.e. ; at infinite dilution, the molar conductivity is known as limiting molar conductivity (Λ°_{m}).

Variation of molar conductivity with concentration :

For a strong electrolyte it is shown by DebyeHuckel Onsager equation as follows : $\Lambda_m = \Lambda^{\circ}_m - A\sqrt{C}$

A = Constant which depends upon nature of solvent and temperature

C = Concentration

$\Lambda_m = \Lambda^\circ{}_m - A\sqrt{C}$

Plot of Λ_m against $C^{1/2}$ is a straight line with intercept equal to Λ°_m and slope equal to '-A'.

Thus, Λ_m decreases linearly with \sqrt{C} , when C = 0, $\Lambda_m = \Lambda^\circ_m$ and Λ°_m can be determined experimentally.

For weak electrolytes :

There is a very large increase in conductance with dilution especially near infinite dilution as no. of ions increases. Λ_m increases as C decreases but does not reach a constant value even at infinite dilution. Hence, their Λ_m cannot be determined experimentally

For a strong electrolyte :

There is only a small increase in conductance with dilution. This is because a strong electrolyte is completely dissociated in solution and so, the number of ions remain constant and on dilution, interionic attractions decreases as ions move far apart.

Kohlrausch's law of independent migration of ions :

It states that limiting molar conductivity of an electrolyte can be represented as the sum of the individual contributions of the anion and cation of the electrolyte.

 $\Lambda^{\circ}_{m} = v_{+}\lambda_{+}^{\circ} + v_{-}\lambda_{-}^{\circ}$ where $\lambda_{+}^{\circ} +$ and λ_{-}° are the limiting molar conductivities of the cation and anion respectively and v_{+} and v_{-} are stoichiometric number of cations and anions respectively in one formula unit of the electrolyte.

Applications of Kohlrausch's law

(i) **Determination of** Λ_m^{∞} for weak electrolytes : The molar conductivity of a weak electrolyte at infinite dilution (Λ_m^{∞}) cannot be determined by extrapolation method. However, Λ_m^{∞} values for weak electrolytes can be determined by using the Kohlrausch's equation.

 $\Lambda^{\infty}_{CH_{3}COOH} = \Lambda^{\infty}_{CH_{3}COONa} + \Lambda^{\infty}_{HCl} - \Lambda^{\infty}_{NaCl}$

(ii) Determination of the degree of ionisation of a weak electrolyte :

If λ_m^c is the molar conductivity of a weak electrolyte at any concentration *C* and, λ_m^∞ is the molar conductivity of a electrolyte at infinite dilution. Then, the degree of ionisation is given by,

$$\alpha_c = \frac{\Lambda_m^c}{\Lambda_m^\infty} = \frac{\Lambda_m^c}{(\nu_+ \lambda_+^\infty + \nu_- \lambda_-^\infty)}$$

Thus, knowing the value of Λ_m^c , and Λ_m^{∞} (From the Kohlrausch's equation), the degree of ionisation at any concentration (α_c) can be determined.

(iii) Determination of the ionisation constant of a weak electrolyte :

for a weak electrolyte *AB*, the ionisation equilibrium is, $AB \rightleftharpoons A^+ + B^-$; If *C* is the initial concentration of the electrolyte *AB* in solution, then the equilibrium concentrations of various species in the solution are, $[AB] = C(1 - \alpha)$, $[A^+] = C\alpha$ and $[B^-] = C\alpha$

Then, the ionisation constant of *AB* is given by, $K = \frac{[A^+][B^-]}{[AB]} = \frac{C\alpha . C\alpha}{C(1-\alpha)} = \frac{C\alpha^2}{(1-\alpha)}$

We know, that at any concentration C, the degree of ionisation (α) is given by, $\alpha = \Lambda_m^c / \Lambda_m^\infty$

Then, $K = \frac{C(\Lambda_m^c / \Lambda_m^\infty)^2}{[1 - (\Lambda_m^c / \Lambda_m^\infty)]} = \frac{C(\Lambda_m^c)^2}{\Lambda_m^\infty (\Lambda_m^\infty - \Lambda_m^c)}$; Thus, knowing Λ_m^∞ and Λ_m^c at any concentration, the

ionisation constant (K) of the electrolyte can be determined.

(iv) Determination of the solubility of a sparingly soluble salt :

the molar conductivity of a sparingly soluble salt at infinite dilution (Λ_m^{∞}) can be obtained from the relationship,

The conductivity of the saturated solution of the sparingly soluble salt is measured. From this, the conductivity of the salt (κ_{salt}) can be obtained by using the relationship, $\kappa_{salt} = \kappa_{sol} - \kappa_{water}$, where, κ_{water} is the conductivity of the water used in the preparation of the saturated solution of the salt.

From equation (i) and (ii) ;

 $C_m = \frac{1000 \kappa_{\text{salt}}}{(\nu_+ \lambda_+^{\infty} + \nu_- \lambda_-^{\infty})}, \quad C_m \text{ is the molar concentration of the sparingly soluble salt in its saturated solution. Thus, <math>C_m$ is equal to the solubility of the sparingly soluble salt in the *mole per litre* units. The solubility of the salt in *gram per litre* units can be obtained by multiplying C_m with the molar mass of the salt.

Types of cells

Dry cell, lead accumulator and fuel cells

	Dry cell	Lead storage battery	Fuel cell
Anode	Zinc	Lead	Porous carbon containing
			catalysts (H ₂ passed)
Cathode	Graphite	Lead dioxide	Porous carbon containing
			catalysts (O ₂ passed)
Electrolyte	$MnO_2 + C$ (touching cathode)	H ₂ SO ₄ (38%)	Conc. aqueous KOH
	$NH_4Cl + ZnCl_2$ (touching anode)		
Anode	$Zn_{(s)} \longrightarrow Zn^{2+}_{(aq)} + 2e^{-}$	$Pb_{(s)} + SO_{4(aq)}^{2-} \longrightarrow$	$H_{2(g)} + 2OH_{(aq)} \longrightarrow$
reaction		$PbSO_{4(s)} + 2e^{-}$	$2H_2O_{(l)} + 2e^-$
Cathode	$MnO_{2(s)} + NH_{4(aq)}^+ + e^-$	$PbO_{2(s)} + SO_{4(aq)}^{2-} + 4H^+ + 2e^-$	$O_{2(g)} + 2H_2O_{(l)} + 4e^-$
reaction	\longrightarrow MnO(OH) _(s) + NH _{3(g)}	\rightarrow PbSO _{4(s)} + 2H ₂ O _(l)	$\longrightarrow 40H_{(aq)}^{-}$

Corrosion : The slow eating away of metals when exposed to the atmosphere is called corrosion.

Corrosion of iron (Rusting) : It is an electrochemical phenomenon which occurs in the presence of moisture and oxygen.

At anode: $2Fe(s) \rightarrow 2Fe^{2+}(aq) + 4e^{-}$

At Cathode : $O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O$

Overall reaction : $2Fe(s) + O_2(g) + 4H^+(aq) \rightarrow 2Fe^{2+} + 2H_2O$

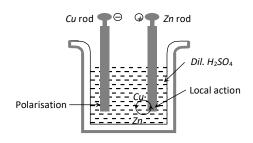
Method used for prevention of corrosion : Barrier protection, sacrificial protection, anti-rust solutions

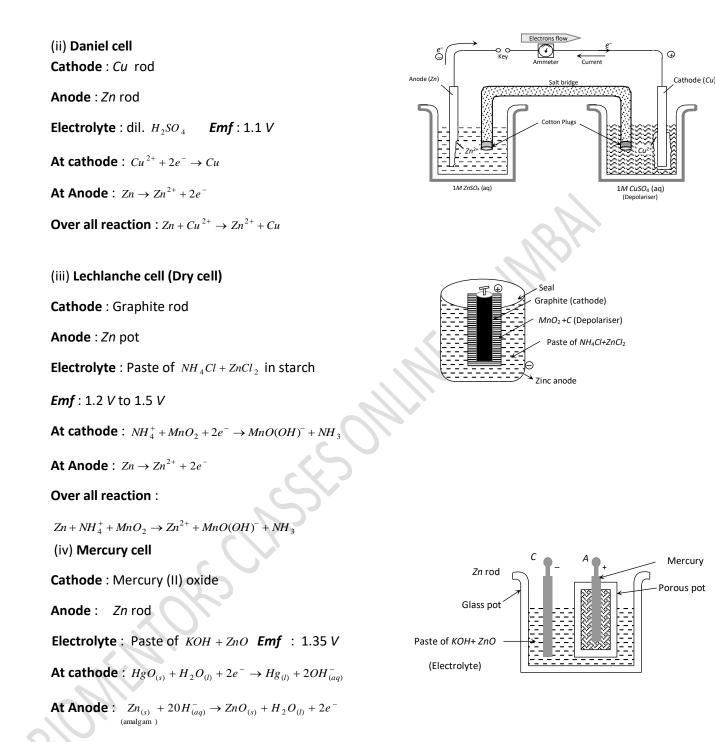
Nernst equation for reduction reaction

$$M^{n+}_{(aq)} + ne^{-} \longrightarrow M_{(s)};$$

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{2.303RT}{nF} \log \frac{1}{[M^{n+}_{(aq)}]}$$

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.0591}{n} \log \frac{1}{[M^{n+}_{(aq)}]}$$


Product of electrolysis of various electrolytes


$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.0591}{n} \log \frac{1}{[M_{(aq)}^{n+}]}$ Product of electrolysis of various electrolytes				
	Products		Reaction	s involved
Electrolyte	At cathode	At anode	At cathode	At anode
Molten NaCl	Na metal	Cl ₂ gas	$\operatorname{Na}_{(l)}^+ + e^- \longrightarrow \operatorname{Na}_{(l)}$	$\operatorname{Cl}_{(l)}^{-} \longrightarrow \frac{1}{2} \operatorname{Cl}_{2(g)} + e^{-}$
Aqueous NaCl	H ₂ gas	Cl ₂ gas	$H_2O_{(l)} + e^- \longrightarrow \frac{1}{2}H_{2(g)} + OH_{(aq)}^-$	$\operatorname{Cl}_{(aq)}^{-} \longrightarrow \frac{1}{2} \operatorname{Cl}_{2(g)} + e^{-}$
Dil. H ₂ SO ₄	H ₂ gas	O ₂ gas	$\mathrm{H}^{+}_{(aq)} + e^{-} \longrightarrow \frac{1}{2} \mathrm{H}_{2(g)}$	$2\mathrm{H}_{2}\mathrm{O}_{(l)} \longrightarrow \mathrm{O}_{2(g)} + 4\mathrm{H}^{+}_{(aq)} + 4e^{-}$
Conc. H ₂ SO ₄	H ₂ gas	S ₂ O ₈ ²⁻	$\mathrm{H}_{(aq)}^{+} + e^{-} \longrightarrow \frac{1}{2} \mathrm{H}_{2(g)}$	$2\mathrm{SO}_{4(aq)}^{2^-} \longrightarrow \mathrm{S}_2\mathrm{O}_{8(aq)}^{2^-} + 2e^-$

Types of commercial cells : There are mainly two types of commercial cells,

Primary cells : In these cells, the electrode reactions cannot be reversed by an external electric energy source. In these cells, reactions occur only once and after use they become dead. Therefore, they are not chargeable. Some common example are, dry cell, mercury cell, Daniell cell and alkaline dry cell

(i) Voltaic cell Cathode : Cu rod Anode : Zn rod **Electrolyte** : dil. H_2SO_4 **Emf** : 1.08 V At cathode : $Cu^{2+} + 2e^- \rightarrow Cu$ At Anode : $Zn \rightarrow Zn^{2+} + 2e^{-}$ **Over all reaction** : $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$

Over all reaction : $Zn_{(s)} + HgO_{(s)} \rightarrow ZnO_{(s)} + Hg_{(l)}$

(2) **Secondary cells :** In the secondary cells, the reactions can be reversed by an external electrical energy source. Therefore, these cells can be *recharged* by passing electric current and used again and again. These are also celled *storage cells*. Examples of secondary cells are, lead storage battery and nickel – cadmium storage cell.

n charged	Lead storage cell	Alkali cell
	Glass vessel Glass vessel PbO ₂ Pb dil. H ₂ SO ₄	Ni(OH) ₂ + Fe(OH) ₂ Perforated steel grid + Ui(OH) 1%
Positive electrode	Perforated lead plates coated with PbO ₂	Perforated steel plate coated with Ni(OH) ₄
Negative electrode	Perforated lead plates coated with pure lead	Perforated steel plate coated with Fe
Electrolyte	dil. H ₂ SO ₄	20% solution of KOH + 1% LiOH
During charging	Chemical reaction At anode : $PbSO_4 + 2H^+ + 2e^- \rightarrow Pb + H_2SO_4$ At cathode : $PbSO_4 + SO_4^{} + 2H_2O - 2e^- \rightarrow PbO_2$ $+ 2H_2SO_4$ Specific gravity of H_2SO_4 increases and when specific gravity becomes 1.25 the cell is fully charged. Emf of cell: When cell is fully charged then $E = 2.2$ <i>volt</i>	Chemical reaction At anode : $Ni (OH)_2 + 2OH^+ - 2e^- \rightarrow Ni(OH)_4$ At cathode : $Fe(OH)_2 + 2K^+ + 2e^- \rightarrow Fe + 2KOH$ Emf of cell : When cell is fully charged then E = 1.36 volt
During	Chemical reaction	Chemical reaction
discharging	At anode : $Pb + SO_4^{} - 2e^- \rightarrow PbSO_4$ At cathode : $PbO_2 + 2H^+ + 2e^- + H_2SO_4 \rightarrow PbSO_4 + 2H_2O$ Specific gravity of H_2SO_4 decreases and when specific gravity falls below 1.18 the cell requires recharging. Emf of cell : When emf of cell falls below 1.9 volt the cell requires recharging.	At anode : $Fe + 2OH^ 2e^- \rightarrow Fe(OH)_2$ At cathode : $Ni(OH)_4 + 2K^+ + 2e^- \rightarrow Ni(OH)_2$ + <i>Emf of cell</i> : When emf of cell falls below 1.1 <i>V</i> it requires charging.
Efficiency	80%	60%

Fuel cells

These are Voltaic cells in which the reactants are continuously supplied to the electrodes. These are designed to convert the energy from the combustion of fuels such as H_2 , CO, CH_4 , etc. directly into electrical energy. The common example is **hydrogen-oxygen fuel cell** as described below,

In this cell, The reactions are **At anode :** $2[H_2(g) + 2OH^-](aq) \longrightarrow 2H_2O(l) + 2e^-$

At cathode : $O_2(g) + 2H_2O(l) + 4e^- \longrightarrow 4OH^-(aq)$

Overall reaction : $2H_2(g) + O_2(g) \longrightarrow 2H_2O(l)$