x

MATHEMATICS

COMPLETE QUESTION BANK

DISCLAIMER- Please Watch Complete Video before solving this question bank. (Nuksaan tumhara hi hoga varna)

Youtube.com/Shobhit Nirwan

Introduction to Trigonometry+Applications of Trigonometry

- Introduction to trigonometry

NCERT:

Example 3 : Consider $\triangle \mathrm{ACB}$, right-angled at C , in which $\mathrm{AB}=29$ units, $\mathrm{BC}=21$ units and $\angle \mathrm{ABC}=\theta$ (see Fig. 8.10). Determine the values of
(i) $\cos ^{2} \theta+\sin ^{2} \theta$,
(ii) $\cos ^{2} \theta-\sin ^{2} \theta$.

Example 4 : In a right triangle $A B C$, right-angled at B, if $\tan A=1$, then verify that
$2 \sin A \cos A=1$.
Example 8 : If $\sin (\mathrm{A}-\mathrm{B})=\frac{1}{2}, \cos (\mathrm{~A}+\mathrm{B})=\frac{1}{2}, 0^{\circ}<\mathrm{A}+\mathrm{B} \leq 90^{\circ}, \mathrm{A}>\mathrm{B}$, find A and B.

Example 10 : If $\sin 3 A=\cos \left(A-26^{\circ}\right)$, where $3 A$ is an acute angle, find the value of A.

Example 13 : Prove that $\sec \mathrm{A}(1-\sin \mathrm{A})(\sec \mathrm{A}+\tan \mathrm{A})=1$.
Example 14 : Prove that $\frac{\cot \mathrm{A}-\cos \mathrm{A}}{\cot \mathrm{A}+\cos \mathrm{A}}=\frac{\operatorname{cosec} \mathrm{A}-1}{\operatorname{cosec} \mathrm{~A}+1}$

Example 15 : Prove that $\frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1}=\frac{1}{\sec \theta-\tan \theta}$, using the identity $\sec ^{2} \theta=1+\tan ^{2} \theta$.

EXERCISE 8.1:

4. Given $15 \cot A=8$, find $\sin A$ and $\sec A$.
5. If angle A and angle B are acute angles such that $\cos A=\cos B$, then show that angleA = angleB.

$$
\text { If } 3 \cot \mathrm{~A}=4 \text {, check whether } \frac{1-\tan ^{2} \mathrm{~A}}{1+\tan ^{2} \mathrm{~A}}=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A} \text { or not. }
$$

8.
9. In $\triangle P Q R$, right-angled at $Q, P R+Q R=25 \mathrm{~cm}$ and $P Q=5 \mathrm{~cm}$. Determine the values of $\sin P, \cos P$ and $\tan P$.

EXERCISE 8.2:

Full exercise is important except true/false O

EXERCISE 8.3:

1. Evaluate (i) $\sin 18 / \cos 72$
4.If $\tan A=\cot B$, prove that $A+B=90^{\circ}$.
2. If A, B and C are interior angles of a triangle $A B C$, then show that

$$
\sin \left(\frac{\mathrm{B}+\mathrm{C}}{2}\right)=\cos \frac{\mathrm{A}}{2}
$$

EXERCISE 8.4:

MOST IMPORTANT (ALL QUESTIONS)(Don't skip any question from this exercise)

- Some Applications of Trigonometry:

NCERT:

Example 3 : An observer 1.5 m tall is 28.5 m away from a chimney. The angle of elevation of the top of the chimney from her eyes is 45°. What is the height of the chimney?

Example 5 : The shadow of a tower standing on a level ground is found to be 40 m longer when the Sun's altitude is 30° than when it is 60°. Find the height of the tower.

Example 6 : The angles of depression of the top and the bottom of an 8 m tall building from the top of a multi-storeyed building are 30° and 45°, respectively. Find the height of the multi-storeyed building and the distance between the two buildings.

EXERCISE 9.1:

6.A 1.5 m tall boy is standing at some distance from a 30 m tall building. The angle of elevation from his eyes to the top of the building increases from 30° to 60° as he walks towards the building. Find the distance he walked towards the building.
8.A statue, 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of elevation of the top of the pedestal is 45°. Find the height of the pedestal.
9. The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 50 m high, find the height of the building.
12. From the top of a 7 m high building, the angle of elevation of the top a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower.
16. The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is 6 m .

PREVIOUS YEARS:

$$
\left(\cos ^{2} 67^{\circ}-\sin ^{2} 23^{\circ}\right) \text { का मान क्या है ? }
$$

What is the value of $\left(\cos ^{2} 67^{\circ}-\sin ^{2} 23^{\circ}\right)$?
$\because \quad \cos 67^{\circ}=\sin 23^{\circ}$
$\therefore \quad \cos ^{2} 67^{\circ}-\sin ^{2} 23=0$
If $4 \tan \theta=3$, evaluate $\left(\frac{4 \sin \theta-\cos \theta+1}{4 \sin \theta+\cos \theta-1}\right)$

OR

If $\tan 2 \mathrm{~A}=\cot \left(\mathrm{A}-18^{\circ}\right)$, where 2 A is an acute angle, find the value of A .

$$
\begin{array}{ll}
4 \tan \theta=3 \\
\Rightarrow \tan \theta=\frac{3}{4} & \\
\Rightarrow \sin \theta=\frac{3}{5} \text { and } \cos \theta=\frac{4}{5} & \tan 2 \mathrm{~A}=\cot \left(\mathrm{A}-18^{\circ}\right) \\
\therefore \quad \frac{4 \sin \theta-\cos \theta+1}{4 \sin \theta+\cos \theta-1}=\frac{4 \times \frac{3}{5}-\frac{4}{5}+1}{4 \times \frac{3}{5}+\frac{4}{5}-1} & \Rightarrow 90^{\circ}-2 \mathrm{~A}=\mathrm{A}-18^{\circ} \\
& \Rightarrow 3 \mathrm{~A}=108^{\circ} \\
& \Rightarrow \mathrm{A} \\
& \Rightarrow \mathrm{~A}=36^{\circ}
\end{array}
$$

Prove that $: \frac{\sin A-2 \sin ^{3} A}{2 \cos ^{3} A-\cos A}=\tan A$.

$$
\begin{aligned}
\text { LHS } & =\frac{\sin \mathrm{A}-2 \sin ^{3} \mathrm{~A}}{2 \cos ^{3} \mathrm{~A}-\cos ^{A}} \\
& =\frac{\sin \mathrm{A}\left(1-2 \sin ^{2} \mathrm{~A}\right)}{\cos \mathrm{A}\left(2 \cos ^{2} \mathrm{~A}-1\right)} \\
& =\frac{\sin \mathrm{A}\left(1-2\left(1-\cos ^{2} \mathrm{~A}\right)\right)}{\cos \mathrm{A}\left(2 \cos ^{2} \mathrm{~A}-1\right)} \\
& =\tan \mathrm{A} \frac{\left(2 \cos ^{2} \mathrm{~A}-1\right)}{\left(2 \cos ^{2} \mathrm{~A}-1\right)} \\
& =\tan \mathrm{A}=\text { RHS }
\end{aligned}
$$

As observed from the top of a 100 m high light house from the sea-level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the light house, find the distance between the two ships. [Use $\sqrt{3}=1.732$]

If a tower 30 m high, casts a shadow $10 \sqrt{3} \mathrm{~m}$ long on the ground, then what is the angle of elevation of the sun ?

$$
\begin{aligned}
& \tan \theta=\frac{30}{10 \sqrt{3}}=\sqrt{3} \\
\Rightarrow & \theta=60^{\circ}
\end{aligned}
$$

On a straight line passing through the foot of a tower, two points C and D are at distances of 4 m and 16 m from the foot respectively. If the angles of elevation from C and D of the top of the tower are complementary, then find the height of the tower.
Solving (i) and (ii) to get

$$
\begin{aligned}
& h^{2}=64 \\
& \Rightarrow \quad h=8 m
\end{aligned}
$$

An aeroplane is flying at a height of 300 m above the ground. Flying at this height, the angles of depression from the aeroplane of two points on both banks of a river in opposite directions are 45° and 60° respectively. Find the width of the river. [Use $\sqrt{3}=1 \cdot 732$]

$$
\begin{aligned}
& \text { 27. Correct Figure } \\
& \underbrace{60^{\circ}}_{x} \int_{0}^{60^{\circ}} \\
& \tan 60^{\circ}=\frac{300}{x} \\
& \Rightarrow \quad \sqrt{3}=\frac{300}{\mathrm{x}} \text { or } \mathrm{x}=\frac{300}{\sqrt{3}}=100 \sqrt{3} \\
& \text { Width of river }=300+100 \sqrt{3}=300+173.2 \\
& =473.2 \mathrm{~m}
\end{aligned}
$$

A man standing on the deck of a ship, which is 10 m above water level, observes the angle of elevation of the top of a hill as 60° and the angle of depression of the base of hill as 30°. Find the distance of the hill from the ship and the height of the hill.

> Correct Figure In $\triangle A B P, \frac{y}{10}=\cot 30^{\circ}=\sqrt{3}$ $\therefore \quad y=10 \sqrt{3} m$ In $\triangle A C Q, \frac{x}{y}=\tan 60^{\circ}=\sqrt{3}$ $\quad x=\sqrt{3}(10 \sqrt{3})=30 \mathrm{~m}$

Height of hill $=30+10=40 \mathrm{~m}$

The angle of elevation of the top Q of a vertical tower $P Q$ from a point X on the ground is 60°. From a point $\mathrm{Y}, 40 \mathrm{~m}$ vertically above X , the angle of elevation of the top Q of tower is 45°. Find the height of the tower PQ and the distance PX. (Use $\sqrt{3}=1.73$)

In Figure 1, a tower AB is 20 m high and BC , its shadow on the ground, is $20 \sqrt{3} \mathrm{~m}$ long. Find the Sun's altitude.

Figure 1

Ans-30degree

The angle of elevation of an aeroplane from a point A on the ground is 60°. After a flight of 15 seconds, the angle of elevation changes to 30°. If the aeroplane is flying at a constant height of $1500 \sqrt{3} \mathrm{~m}$, find the speed of the plane in $\mathrm{km} / \mathrm{hr}$.

2. The angle of depression of a car parked on the road from the top of a 150 m high tower is 30°. The distance of the car from the tower (in metres) is
(A) $50 \sqrt{3}$
(B) $150 \sqrt{3}$
(C) $150 \sqrt{2}$
(D) 75

Correct answer: A

Let $A B$ be the tower and $B C$ be distance between tower and car. Let θ be the angle of
depression of the car.
According to the given information
In $\triangle \mathrm{ABC}$,
$\tan \theta=\frac{\mathrm{BC}}{\mathrm{AB}} \quad\left[\right.$ Using (1)] and $\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
$\therefore B C=\frac{150}{\sqrt{3}}=\frac{150 \sqrt{3}}{3}=50 \sqrt{3}$
Hence, distance between the tower and car is $50 \sqrt{3}$.

The angle of elevation of an aeroplane from a point on the ground is 60°. After a flight of 30 seconds the angle of elevation becomes 30°. If the aeroplane is flying at a constant height of $3000 \sqrt{3} \mathrm{~m}$, find the speed of the aeroplane.
olution:

Let P and Q be the two positions of the plane and A be the point of observation. Let ABC be the horizontal line through A .

It is given that angles of elevation of the plane in two positions P and Q from a point A are 60° and 30° respectively.
$\therefore \angle \mathrm{PAB}=60^{\circ}, \angle \mathrm{QAB}=30^{\circ}$. It is also given that $\mathrm{PB}=3000 \sqrt{3} \mathrm{~m}$ meters
In $\triangle A B P$, we have
$\operatorname{Tan} 60=B P / A B$
Root $3=3000 \sqrt{3} / \mathrm{AB}$
$\mathrm{AB}=3000 \mathrm{~m}$
In $\triangle A C Q$, we have
$\tan 30=C Q / A C$
$1 / \sqrt{3}=3000 \sqrt{3} / \mathrm{AC}$
$\mathrm{AC}=9000 \mathrm{~m}$
\therefore Distance $=\mathrm{BC}=\mathrm{AC}-\mathrm{AB}=9000 \mathrm{~m}-3000 \mathrm{~m}=6000 \mathrm{~m}$
Thus, the plane travels 6 km in 30 seconds
Hence speed of plane $=6000 / 30=200 \mathrm{~m} / \mathrm{sec}=720 \mathrm{~km} / \mathrm{h}$

The angle of elevation of the top of a tower at a distance of 120 m from a point A or the ground is 45°. If the angle of elevation of the top of a flagstaff fixed at the top of the tower, at A is 60°, then find the height of the flagstaff. [Use $\sqrt{3}=1.73$]

Solution:
Let $A B$ is the tower of height h meter and $A C$ is flagstaff of height x meter.

$\angle \mathrm{APB}=45^{\circ}$ and $\angle \mathrm{BPC}=60^{\circ}$
Tan $60=(\mathrm{x}+\mathrm{h}) / 120$
$\sqrt{3}=(\mathrm{x}+\mathrm{h}) / 120$
$(\mathrm{x}+\mathrm{h})=120 \sqrt{3}$
$\mathrm{x}=120 \sqrt{3}-\mathrm{h}$
$\operatorname{Tan} 45^{\circ}=\mathrm{h} / 120$
$1=h / 120$
$h=120$
Therefore height of the flagstaff $=120 \sqrt{3}-120$
$=120(\sqrt{3}-1) \mathrm{m}$
$=87.6 \mathrm{~m}$
The angle of depression of a car, standing on the ground, from the top of a 75 m high tower, is 30°. The distance of the car from the base of the tower (in m.) is :
(A) $25 \sqrt{3}$
(B) $50 \sqrt{3}$
(C) $75 \sqrt{3}$
(D) 150

Let $A B$ be the tower of height 75 m and C be the position of the car
In $\triangle A B C$,
$\cot 30^{\circ}=\frac{A C}{A B}$
$\Rightarrow A C=A B \cot 30^{\circ}$
$\Rightarrow A C=75 \mathrm{~m} \times \sqrt{3}$
$\Rightarrow A C=75 \sqrt{3} \mathrm{~m}$
Thus, the distance of the car from the base of the tower is $75 \sqrt{3} \mathrm{~m}$.

The horizontal distance between two poles is 15 m . The angle of depression of the top of first pole as seen from the top of second pole is 30°. If the height of the second pole is 24 m , find the height of the first pole. |Use $\sqrt{3}=1.732$]

Let $A B$ and $C D$ be the two poles, where $C D$ (the second pole) $=24 \mathrm{~m}$.
$B D=15 \mathrm{~m}$
Let the height of pole $A B$ be h m .
$A L=B D=15 \mathrm{~m}$ and $A B=L D=h$
So, CL $=C D-L D=24-h$
In $\triangle \mathrm{ACL}$,
$\tan 30^{\circ}=\frac{\mathrm{CL}}{\mathrm{AL}}$
$\Rightarrow \tan 30^{\circ}=\frac{24-\mathrm{h}}{15}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{24-\mathrm{h}}{15}$
$\Rightarrow 24-\mathrm{h}=\frac{15}{\sqrt{3}}=5 \sqrt{3}$
$\Rightarrow \mathrm{h}=24-5 \sqrt{3}$
$\Rightarrow \mathrm{h}=24-5 \times 1.732 \quad \mid$ Taking $\sqrt{3}=1.732]$
$\Rightarrow \mathrm{h}=15.34$
Thus, height of the first pole is 15.34 m

Two poles of equal heights are standing opposite each other on either side of the roads, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30° respectively. Find the height of the poles and the distances of the point from the poles.

```
Let }AC\mathrm{ and BD be the two poles of the same height h m.
\frac{1}{3}}=\frac{h}{x
In \triangleBPD,
tan60
\sqrt{}{3}=\frac{h}{80-x}
```

Dividing (1) by (2),

$\frac{1}{\sqrt{3}}$
$\sqrt{3}$
$=\frac{\frac{h}{x}}{\frac{h}{80-x}}$
$\Rightarrow \frac{1}{3}=\frac{80-x}{x}$
$\Rightarrow x=240-3 x$
$\Rightarrow 4 x=240$
$\Rightarrow x=60$
From
$\frac{1}{\sqrt{3}}=\frac{h}{x}$
$\Rightarrow h=\frac{60}{\sqrt{3}}=20 \sqrt{3} \mathrm{~m}$

The length of shadow of a tower on the plane ground is $\sqrt{3}$ times the height of the tower. The angle of elevation of sun is :
(A) 45°
(B) 30°
(C) 60°
(D) 90°

The angles of depression of two ships from the top of a light house and on the same side of it are found to be 45° and 30°. If the ships are 200 m apart, find the height of the light house.

$$
\left.\begin{array}{l}
\text { Writing the trigonometric cquations } \\
\text { (i) } \frac{x}{y}=\tan 45^{\circ}=1 \Rightarrow x=y \\
\text { (ii) } \frac{x}{y+200}=\tan 30^{\circ} \Rightarrow \frac{x}{x+200}=\frac{1}{\sqrt{3}} 1 \mathrm{~m} \\
\\
=100(\sqrt{3}+1) \mathrm{m}
\end{array}\right\}
$$

