x

MATHEMATICS

COMPLETE QUESTION BANK

DISCLAIMER- Please Watch Complete Video before solving this question bank. (Nuksaan tumhara hi hoga varna)

Youtube.com/Shobhit Nirwan

TRIANGLES

NCERT:

PROOF OF-
Theorem 6.1 : If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Theorem 6.4 : If in two triangles, sides of one triangle are proportional to (i.e., in the same ratio of) the sides of the other triangle, then their corresponding angles are equal and hence the two triangles are similiar.

Theorem 6.6 : The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

Theorem 6.8 : In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

EXERCISE 6.1

1. Fill in the blanks using the correct word given in brackets(THESE CAN BE ASKED IN FORM OF MCQ IN BOARDS)
(i) All circles are \qquad . (congruent, similar)
(ii) All squares are \qquad . (similar, congruent)
(iii) All \qquad triangles are similar. (isosceles, equilateral)
(iv) Two polygons of the same number of sides are similar, if (a) their corresponding angles are \qquad and (b) their corresponding sides are \qquad .(equal, proportional)

EXERCISE 6.2

2. E and F are points on the sides $P Q$ and $P R$ respectively of a triangle $P Q R$. For each

of the following cases, state whether EF || QR : ${ }^{1}$
Fig. 6.18
(i) $\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4 \mathrm{~cm}$
(ii) $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}$ and $\mathrm{RF}=9 \mathrm{~cm}$
(iii) $\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}$ and $\mathrm{PF}=0.36 \mathrm{~cm}$
3. In Fig. 6.19, $D E$ || $A C$ and $D F|\mid A E$. Prove that $B E / F E=B E / E C$.

Fig. 6.19
9. $A B C D$ is a trapezium in which $A B|\mid D C$ and its diagonals intersect each other at the point O. Show that $A O / B O=C O / D O$.

EXERCISE 6.3

2. In Fig. 6.35, $\triangle O D C \sim \triangle O B A$ angle $B O C=125^{\circ}$ and angleCDO $=70^{\circ}$. Find angleDOC,

Fig. 6.35
angleDCO and angleOAB.
6. In Fig. 6.37 , if $\Delta \mathrm{ABE} \cong \Delta \mathrm{ACD}$, show that $\Delta \mathrm{ADE} \sim \Delta \mathrm{ABC}$.

8. E is a point on the side AD produced of a parallelogram $A B C D$ and $B E$ intersects $C D$ at F . Show that $\triangle \mathrm{ABE} \sim \triangle \mathrm{CFB}$.
10. CD and GH are respectively the bisectors of $\angle \mathrm{ACB}$ and $\angle \mathrm{EGF}$ such that D and H lie on sides AB and FE of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EFG}$ respectively. If $\Delta A B C \sim \Delta F E G$, show that:
(i) $\frac{\mathrm{CD}}{\mathrm{GH}}=\frac{\mathrm{AC}}{\mathrm{FG}}$
(ii) $\triangle \mathrm{DCB} \sim \Delta \mathrm{HGE}$
(iii) Δ DCA $\sim \Delta$ HGF

Fig. 6.39
13. D is a point on the side $B C$ of a triangle $A B C$ such that angleADC = angleBAC. Show that $C^{2}=C B . C D$.
15. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

EXERCISE 6.4

1. Let $\triangle A B C \sim \triangle D E F$ and their areas be, respectively, $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=$ 15.4 cm , find $B C$.
5.D, E and F are respectively the mid-points of sides $A B, B C$ and $C A$ of $\triangle A B C$. Find the ratio of the areas of $\triangle D E F$ and $\triangle A B C$.
2. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.
3. Sides of two similar triangles are in the ratio 4:9. Areas of these triangles are in the ratio
(A) $2: 3$
(B) $4: 9$
(C) $81: 16$
(D) $16: 81$

EXERCISE 6.5

4. $A B C$ is an isosceles triangle right angled at C. Prove that $A B^{2}=2 A C^{2}$.
5. $A B C$ is an isosceles triangle with $A C=B C$. If $A B^{2}=2 A C^{2}$, prove that $A B C$ is a right triangle.
6. $A B C$ is an equilateral triangle of side $2 a$. Find each of its altitudes.
7. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.
8. In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $B D=1 / 3 B C$. Prove that $9 A D^{2}=7 A B^{2}$.
9. Tick the correct answer and justify: $\ln \triangle A B C, A B=6 \sqrt{c m}, A C=12 \mathrm{~cm}$ and $B C=6$ cm.

The angle B is :
(A) 120°
(B) 60°
(C) 90°
(D) 45°

PREVIOUS YEARS:

$$
\text { Given } \Delta \mathrm{ABC} \sim \Delta \mathrm{PQR} \text {, if } \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{1}{3} \text {, then find } \frac{\text { ar } \Delta \mathrm{ABC}}{\operatorname{ar} \Delta \mathrm{PQR}} \text {. }
$$

$$
\begin{aligned}
\frac{\text { ar } \triangle \mathrm{ABC}}{\text { ar } \triangle \mathrm{PQR}} & =\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}} \\
& =\left(\frac{1}{3}\right)^{2}=\frac{1}{9}
\end{aligned}
$$

Prove that the area of an equilateral triangle described on one side of the square is equal to half the area of the equilateral triangle described on one of its diagonal.

OR

If the area of two similar triangles are equal, prove that they are congruent.
17.

Let the side of the square be ' a ' units
$\therefore \quad \mathrm{AC}^{2}=\mathrm{a}^{2}+\mathrm{a}^{2}=2 \mathrm{a}^{2}$
$\Rightarrow \mathrm{AC}=\sqrt{2} \mathrm{a}$ units
Area of equilateral $\triangle B C F=\frac{\sqrt{3}}{4} \mathrm{a}^{2}$ sq.u
Area of equilateral $\triangle A C E=\frac{\sqrt{3}}{4}(\sqrt{2} a)^{2}=\frac{\sqrt{3}}{2} a^{2}$ sq.u
\Rightarrow Area $\triangle \mathrm{BCF}=\frac{1}{2} \mathrm{Ar} \triangle \mathrm{ACE}$
OR

Let $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.
$\therefore \quad \frac{\text { ar } \triangle \mathrm{ABC}}{\text { ar } \triangle \mathrm{PQR}}=\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{PR}^{2}}$
Given ar $\triangle \mathrm{ABC}=$ ar $\triangle \mathrm{PQR}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}=1=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{PR}^{2}} \\
& \Rightarrow \quad \mathrm{AB}=\mathrm{PQ}, \mathrm{BC}=\mathrm{QR}, \mathrm{AC}=\mathrm{PR} \\
& \Rightarrow \quad \text { Therefore } \triangle \mathrm{ABC} \cong \triangle \mathrm{PQR} . \text { (sss congruence rule) }
\end{aligned}
$$

In an equilateral $\triangle A B C, D$ is a point on side $B C$ such that $B D=\frac{1}{3} B C$. Prove that $9(\mathrm{AD})^{2}=7(\mathrm{AB})^{2}$

OR

Prove that, in a right triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.
5.

Draw $A E \perp B C$
$\triangle \mathrm{AEB} \cong \triangle \mathrm{AEC} \quad$ (RHS congruence rule)
$\therefore \mathrm{BE}=\mathrm{EC}=\frac{1}{2} \mathrm{BC}=\frac{1}{2} \mathrm{AB}$
Let $\mathrm{AB}=\mathrm{BC}=\mathrm{AC}=\mathrm{x}$
Now $\mathrm{BE}=\frac{\mathrm{x}}{2}$ and $\mathrm{DE}=\mathrm{BE}-\mathrm{BD}$

$$
\begin{aligned}
& =\frac{x}{2}-\frac{x}{3} \\
& =\frac{x}{6}
\end{aligned}
$$

$$
\begin{array}{lrl}
\text { Now } & \mathrm{AB}^{2} & =\mathrm{AE}^{2}+\mathrm{BE}^{2} \\
\text { and } & \mathrm{AD}^{2} & =\mathrm{AE}^{2}+\mathrm{DE}^{2}
\end{array} \quad \ldots(\mathrm{l}) ~ 子
$$

$$
\text { From (1) and (2) } \mathrm{AB}^{2}-\mathrm{AD}^{2}=\mathrm{BE}^{2}-\mathrm{DE}^{2}
$$

$$
\Rightarrow \mathrm{x}^{2}-\mathrm{AD}^{2}=\left(\frac{\mathrm{x}}{2}\right)^{2}-\left(\frac{\mathrm{x}}{6}\right)^{2}
$$

$$
\Rightarrow A D^{2}=x^{2}-\frac{x^{2}}{4}+\frac{x^{2}}{36}
$$

$$
\Rightarrow \mathrm{AD}^{2}=\frac{28}{36} \mathrm{x}^{2}
$$

$$
\Rightarrow 9 \mathrm{AD}^{2}=7 \mathrm{AB}^{2}
$$

OR
Given, to Prove, Construction and Figure
Correct Proof
In the given figure, XY and $\mathrm{X}^{\prime} \mathrm{Y}^{\prime}$ are two parallel tangents to a circle with centre O and another tangent AB with point of contact C , is intersecting $X Y$ at A and $X^{\prime} Y^{\prime}$ at B. Prove that $\angle A O B=90^{\circ}$.

In right angled $\triangle \mathrm{POA}$ and $\triangle \mathrm{OCA}$
$\triangle \mathrm{OPA} \cong \triangle \mathrm{OCA}$
$\therefore \quad \angle \mathrm{POA}=\angle \mathrm{AOC} \quad$...(i)
Also $\triangle \mathrm{OQB} \cong \triangle \mathrm{OCB}$
$\therefore \quad \angle \mathrm{QOB}=\angle \mathrm{BOC} \quad$...(ii)
Therefore $\angle \mathrm{AOB}=\angle \mathrm{AOC}+\angle \mathrm{COB}$

$$
\begin{aligned}
& =\frac{1}{2} \angle \mathrm{POC}+\frac{1}{2} \angle \mathrm{COQ} \\
& =\frac{1}{2}(\angle \mathrm{POC}+\angle \mathrm{COQ}) \\
& =\frac{1}{2} \times 180^{\circ} \\
& =90^{\circ}
\end{aligned}
$$

In fig. 8 , the vertices of $\triangle \mathrm{ABC}$ are $\mathrm{A}(4,6), \mathrm{B}(1,5)$ and $\mathrm{C}(7,2)$. A line-segment $D E$ is drawn to intersect the sides $A B$ and $A C$ at D and E respectively such that $\frac{A D}{A B}=\frac{A E}{A C}=\frac{1}{3}$. Calculate the area of $\triangle A D E$ and compare it with area of $\triangle \mathrm{ABC}$.

Figure 8

Coords of D are: $\left(\frac{1(1)+2(4)}{3}\right),\left(\frac{1(5)+2(6)}{3}\right)$ i.e. $\left(3, \frac{17}{3}\right)$
Coords of E are: $\left(\frac{1(7)+2(4)}{3}, \frac{1(2)+2(6)}{3}\right)$ i.e. $\left(5, \frac{14}{3}\right)$
ar. $\triangle \mathrm{ADE}=\frac{1}{2}\left[4(1)+3\left(\frac{14}{3}-6\right)+5\left(6-\frac{17}{3}\right)\right]=\frac{5}{6}$
ar. $\Delta \mathrm{ABC}=\frac{1}{2}[4(3)+1(-4)+7(1)]=\frac{15}{2}$
ar. $\triangle \mathrm{ADE}:$ ar. $\triangle \mathrm{ABC}=\frac{5}{6}: \frac{15}{2}$ or $1: 9$
$A B C D$ is a rectangle whose three vertices are $B(4,0), C(4,3)$ and $D(0,3)$. The length of one of its diagonals is
(A) 5
(B) 4
(C) 3
(D) 25

We see that $A B=4$ units and $B C=3$ units
Using Pythagoras theorem
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$=4^{2}+3^{2}$
$\mathrm{AC}^{2}=25$
Thus AC $=5$ units
Hence length of the diagonal of the rectangle is 5 un

Prove that the diagonals of a rectangle ABCD , with vertices $\mathrm{A}(2,-1), \mathrm{B}(5,-1$) $C(5,6)$ and $D(2,6)$, are equal and bisect each other.

$\mathrm{AC}^{2}=(5-2)^{2}+(6+1)^{2}=9+49=58$ sq. unit
$\mathrm{BD}^{2}=(5-2)^{2}+(-1-6)^{2}=9+49=58$ sq. unit
Diagonals of parallelogram are equal so rectangle
$A(4,-6), B(3,-2)$ and $C(5,2)$ are the vertices of a $\triangle A B C$ and $A D$ is its median. Prove that the median AD divides $\triangle \mathrm{ABC}$ into two triangles of equal areas.

Let co - ordinate of $D(x, y)$ and D is midpoint of $B C$
$x=(3+5) / 2=4 ; y=(2-2) / 2=0$

Now Area of triangle $\mathrm{ABD}=1 / 2\{4(-2-0)+3[(0-(-6)]+4[(-6)-(-2)]\}$
$=0.5 \times[-8+18 \cdot 16]=3$ sq unit
and Area of triangle $\mathrm{ACD}=1 / 2[5(-6-0)+4(0-2)+4(2+6)]=3$ sq unit
Hence, the median AD divides triangle ABC into two triangle of equal area.

IMPORTANT QUESTIONS

R and S are points on the sides $D E$ and $E F$ respectively of a $A D E F$ such that $E R=5 \mathrm{~cm}$, $\mathrm{RD}=2.5 \mathrm{~cm}, \mathrm{SE}=1.5 \mathrm{~cm}$ and $\mathrm{FS}=3.5 \mathrm{~cm}$. Find whether $\mathrm{RS} \| \mathrm{DF}$ or not.

Solution:

Construction: Join RS

To find:

Proof: We have
and
Now
Similarly, we have,
and
Now,
Here
\Rightarrow RS is not parallel to DF.

$$
\begin{aligned}
& \mathrm{RS} \| \mathrm{DF} \text { or not } \\
& \mathrm{RE}=5 \mathrm{~cm} \\
& \mathrm{RD}=2.5 \mathrm{~cm}
\end{aligned}
$$

$$
\frac{\mathrm{RE}}{\mathrm{RD}}=\frac{5}{2.5}=\frac{2}{1}
$$

$$
\mathrm{ES}=1.5 \mathrm{~cm}
$$

$$
\mathrm{SF}=3.5 \mathrm{~cm}
$$

$$
\frac{\mathrm{SF}}{\mathrm{ES}}=\frac{3.5}{1.5}=\frac{7}{3}
$$

$$
\frac{R E}{R D} \neq \frac{S F}{E S}
$$

From airport two aeroplanes start at the same time. If the speed of first aeroplane due North is $500 \mathrm{~km} / \mathrm{h}$ and that of other due East is $650 \mathrm{~km} / \mathrm{h}$, then find the distance betweer
two aeroplanes after 2 hours
Solution:
Speed of aeroplane along north $=500 \mathrm{~km} / \mathrm{h}$ Speed of aeroplane along east $=650 \mathrm{~km} / \mathrm{h}$ Distance travelled by aeroplane in 2 hours in North direction.

$$
=O B=500 \times 2
$$

$=1000 \mathrm{~km}$.
Distance travelled by aeroplane in 2 hours in East direction.

$$
\begin{aligned}
& =\mathrm{OA}=650 \times 2 \\
& =1300 \mathrm{~km}
\end{aligned}
$$

Distance between both a roplanes after 2 hours $=A B$.
$\mathrm{AB}^{2}=\mathrm{OB}^{2}+\mathrm{ON}^{2}$
[By Pythagoras theorem in $\triangle \mathrm{AOB}$]

$A A B C$, is right angled at C. If p is the length of the perpendicular from C to $A B$ and a, b, c are the lengths of the sides opposite $\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}$ respectively then prove that
$\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$.
Given: $\operatorname{In} \triangle \mathrm{ACB}, \angle \mathrm{C}=90^{\circ}$, and $\mathrm{CD} \perp \mathrm{AB}$.
Also, $\mathrm{AB}=c, \mathrm{BC}=a, \mathrm{CA}=b$ and $\mathrm{CD}=p$
To prove: $\quad \frac{1}{2}=\frac{1}{2}+\frac{1}{b^{2}}$

Proof: $\ln \triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}$
Apply Pythagoras theorem

$$
\mathrm{AB}^{2}=\mathrm{BC}^{2}+\mathrm{AC}^{2}
$$

$$
\begin{equation*}
c^{2}=a^{2}+b^{2} \tag{ii}
\end{equation*}
$$

Now, \quad area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{CD}=\frac{1}{2} \times p \times c$
Also \quad area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{AC} \times \mathrm{BC}=\frac{1}{2} \times b \times a$
Equating (iii) and (ii), we have

$$
\begin{aligned}
\frac{1}{2} p c & =\frac{1}{2} a b \\
p c & =a b \\
c & =\frac{a b}{p} \text { and } c^{2}=\frac{a^{2} b^{2}}{p^{2}}
\end{aligned}
$$

Put value of c^{2} in equation (i)

$$
\begin{aligned}
\frac{a^{2} b^{2}}{p^{2}} & =a^{2}+b^{2} \\
\frac{1}{p^{2}} & =\frac{a^{2}}{a^{2} b^{2}}+\frac{b^{2}}{a^{2} b^{2}} \quad \quad\left(\text { dividing both sides by } a^{2} b^{2}\right) \\
\frac{1}{p^{2}} & =\frac{1}{b^{2}}+\frac{1}{a^{2}}
\end{aligned}
$$

In the figure, ABCD is a parallelogram and E divides BC in the ratio 1:3. DB and AE intersect at F. Show that $D F=4 F B$ and $A F=4 F E$

Given: ABCD is a parallelogram and $\mathrm{BE}: \mathrm{EC}:: 1: 3$
To show: $\mathrm{DF}=4 \mathrm{FB}$ and $\mathrm{AF}=4 \mathrm{FE}$
Proof: In $\triangle A D F$ and $\triangle E B F$

as
$\frac{\mathrm{BE}}{\mathrm{EC}}=\frac{1}{3} \Rightarrow \mathrm{EC}=3 \mathrm{BE}$
$\therefore \quad \mathrm{BC}=\mathrm{BE}+\mathrm{CE}=\mathrm{BE}+3 \mathrm{BE}$
$\Rightarrow \quad B C=4 B E$
as $\quad \mathrm{AD}=\mathrm{BC}$
Put in (i), we get
and

$$
\begin{aligned}
& \frac{D F}{B F}=\frac{A F}{E F}=\frac{4}{1} \\
& \text { DF }=4 B F \\
& A F=4 E F
\end{aligned}
$$

In figure, if $\angle \mathrm{CAB}=\angle \mathrm{CED}$, then prove that $\mathrm{AB} \times \mathrm{DC}=\mathrm{ED} \times \mathrm{BC}$.

Given: $\quad \angle \mathrm{CAB}=\angle \mathrm{CED}$
i.e. $\quad \angle 1=\angle 2$

To prove: $\quad \mathrm{AB} \times \mathrm{DC}=\mathrm{ED} \times \mathrm{BC}$
Proof: In $\triangle C A B$ and $\triangle C E D$

So, $\quad \triangle C A B \sim \triangle C E D$
$\Rightarrow \quad \frac{\mathrm{BC}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{ED}}$
$\Rightarrow \quad \mathrm{AB} \times \mathrm{DC}=\mathrm{BC} \times \mathrm{ED}$
(Given)
(Common)
(By AA similarity)

Hence Proved

In $\triangle A B C$, if $\angle A D E=\angle B$, then prove that $\triangle A D E \sim \triangle A B C$. Also, if $A D=7.6 \mathrm{~cm}, A E=7.2$ $\mathrm{cm}, \mathrm{BE}=4.2 \mathrm{~cm}$ and $\mathrm{BC}=8.4 \mathrm{~cm}$, then find $D E$.
Solution:
Given: $\angle \mathrm{ADE}=\angle \mathrm{B}$, i.e. $\angle 1=\angle 2$
To prove: $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$
Proof: In $\triangle A D E$ and $\triangle A B C$

$$
\begin{aligned}
& \angle 1=\angle 2 \\
& \angle \mathrm{~A}=\angle \mathrm{A}
\end{aligned}
$$

[Given]
[Common]
So, $\quad \triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$
[By AA similarity]

$\Rightarrow \quad \frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{DE}}{\mathrm{BC}}$
$\Rightarrow \quad \frac{7.6}{7.2+4.2}=\frac{\mathrm{DE}}{8.4}$

$$
\left\{\because \mathrm{AB}=\mathrm{AE}+\mathrm{BE}^{\star}=7.2+4.2\right.
$$

$\Rightarrow \quad \frac{7.6}{11.4}=\frac{\mathrm{DE}}{8.4} \Rightarrow \mathrm{DE}=\frac{7.6 \times 8.4}{11.4}=5.6$
Hence,
$\mathrm{DE}=5.6 \mathrm{~cm}$.

In the figure, $A B C$ is a triangle and $B D \perp A C$. Prove that $A B^{2}+C D^{2}=A D^{2}+B C^{2}$

Solution:

Given: A triangle ABC in which $\mathrm{BD} \perp \mathrm{AC}$.
To prove: $\mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{AD}^{2}+\mathrm{BC}^{2}$
Proof: In right $\triangle A D B$,
$A B^{2}=A D^{2}+B D^{2}$
[By Pythagoras Theorem] ...(i)
In right $\triangle C D B$,

[By Pythagoras Theorem] ...(ii)

Subtracting equation (i) from (i), we get,

$$
\begin{aligned}
& A B^{2}-\mathrm{BC}^{2}=A D^{2}+\mathrm{BD}^{2}-\mathrm{CD}^{2}-\mathrm{BD}^{2} \\
& \mathrm{AB}^{2}-\mathrm{BC}^{2}=\mathrm{AD}^{2}-\mathrm{CD}^{2}
\end{aligned}
$$

$$
\therefore \quad A B^{2}+C D^{2}=A D^{2}+B C^{1} \quad \text { Hence proved. }
$$

Equiangular triangles are drawn on sides of right angled triangle in which perpendicular is double of its base. Show that area of triangle on the hypotenuse is the sum of areas of the other two triangles?

Solution:
Given: A right angled triangle ABC with right angled at B .
Equiangular triangles $\mathrm{PAB}, \mathrm{QBC}$ and RAC are described on sides AB, BC and CA respectively. Let $\mathrm{BC}=x$ and $\mathrm{AB}=2 x$
To prove: $\operatorname{ar}(\triangle \mathrm{PAB})+\operatorname{ar}(\triangle \mathrm{QBC})=\operatorname{ar}(\triangle \mathrm{RAC})$
Proof: \because Equiangular triangles are equilateral also
Area of $\triangle \mathrm{PAB}=\frac{\sqrt{3}}{4} \times(2 x)^{2}$
$=\sqrt{3} x^{2}$
Arca of $\triangle B B C=\frac{\sqrt{3}}{4} \times(x)^{2}$
$=\frac{\sqrt{3}}{4} x^{2}$
Area of $\triangle R A C=\frac{\sqrt{3}}{4} \times(A C)^{2}$
$=\frac{\sqrt{3}}{4} \times 5 x^{2} \quad\left[\because\right.$ In $\triangle A B C, A B^{2}+B^{2}=A C^{2}$
$=\frac{5 \sqrt{3} x^{2}}{4}$
 $\left.\mathrm{AC}^{2}=(2 x)^{2}+x^{2}=5 x^{2}\right]$...(iii)

Adding (i) and (ii)

If in a right angle $A A B C$, right angled at $A, A D \perp B C$, then prove that $A B^{2}+C D^{2}=B D^{2}+$ $A C^{2}$

Solution:

In right $\triangle \mathrm{ADB}, \angle \mathrm{D}=90^{\circ}$
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
...(i) [By Pythagoras Theorem]
In right $\triangle \mathrm{ADC}, \angle \mathrm{D}=90^{\circ}$

$$
\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}
$$

...(ii) [By Pythagoras Theorem]
Subtracting equation (ii) from (i), we get

$$
\begin{aligned}
& \mathrm{AB}^{2}-\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}-\mathrm{AD}^{2}-\mathrm{CD}^{2} \\
& A B^{2}+\mathrm{CD}^{2}=\mathrm{BD}^{2}+\mathrm{AC}^{2}
\end{aligned}
$$

Hence proved.

Long Answer Type Questions [4 Marks]

(i) $\mathrm{AB}^{2}=\mathrm{AY}^{2}+\frac{\mathrm{BC}^{2}}{4}-\mathrm{BC} \cdot \mathrm{XY}$
(ii) $\mathrm{AC}^{2}=\mathrm{AY}^{2}+\frac{\mathrm{BC}^{2}}{4}+\mathrm{BC} \cdot \mathrm{XY}$

Solution:

In $\triangle A B C, A X \perp B C$ and Y is middle point of $B C$.

Then prove that,

(i) $\mathrm{AB}^{2}=\mathrm{AY}^{2}+\frac{\mathrm{BC}^{2}}{4}-\mathrm{BC} \cdot \mathrm{XY}$
(ii) $\mathrm{AC}^{2}=\mathrm{AY}^{2}+\frac{\mathrm{BC}^{2}}{4}+\mathrm{BC} \cdot X Y$

Given: $A \triangle A B C$ in which $A X \perp B C$ and Y is mid-point of $B C$.
To prove: (i) $\mathrm{AB}^{2}=\mathrm{AY}^{2}+\frac{\mathrm{BC}^{2}}{4}-\mathrm{BC} . X Y$
(ii) $\mathrm{AC}^{2}=\mathrm{AY}^{2}+\frac{\mathrm{BC}^{2}}{4}+\mathrm{BCXY}$

Proof: (i) $\ln \triangle A B X$.

$$
\begin{aligned}
& \mathrm{AB}^{2}=\mathrm{AX}^{2}+\mathrm{BX}^{2} \\
& \text { [By Pythagoras Theorem] } \\
& A B^{2}=A X^{2}+(B Y-X Y)^{2} \\
& A B^{2}=A X^{2}+\left(\frac{B C}{2}-X Y\right)^{2} \\
& {[\because \mathrm{Y} \text { is mid point of } \mathrm{BC}]} \\
& \mathrm{AB}^{2}=A X^{2}+\frac{\mathrm{BC}^{2}}{4}+X Y^{2}-2\left(\frac{B C}{2}\right)(X Y) \\
& A B^{2}=\left(A X^{2}+X Y^{2}\right)+\frac{B C^{2}}{4}-\frac{2 B C}{2}, X Y \\
& A B^{2}=A Y^{2}+\frac{B C^{2}}{4}-B C X Y \quad\left[\because \ln \triangle A X Y, A X^{2}+X Y^{2}=A Y^{2}\right\rceil \\
& \text { Hence proved. }
\end{aligned}
$$

(ii) $\ln \triangle A X C$,

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{AC}^{2}=\mathrm{AX}^{2}+\mathrm{XC}^{2} \\
\mathrm{AC}^{2}=\mathrm{AX}^{2}+(\mathrm{XY}+\mathrm{YC})^{2} \\
\mathrm{AC}^{2}=\mathrm{AX}^{2}+\left(\mathrm{XY}+\frac{\mathrm{BC}}{2}\right)^{2} \\
\mathrm{AC}^{2}=\left(\mathrm{AX}^{2}+X \mathrm{XY}^{2}\right)+\frac{\mathrm{BC}^{2}}{4}+2(\mathrm{XY}) \cdot\left(\frac{\mathrm{BC}}{2}\right) \\
\mathrm{AC}^{2}=\mathrm{AY}^{2}+\frac{\mathrm{BC}^{2}}{4}+\mathrm{BC} \cdot \mathrm{XY} \quad[\because \text { In Y is mid-point of } \mathrm{BC}]
\end{array} \quad\left[\because \text { In } \triangle \mathrm{AXY}, \mathrm{AX}^{2}+\mathrm{XY}^{2}=\mathrm{AY}^{2}\right] \\
& \text { Hence proved. }
\end{aligned}
$$

In $A A B C, X$ is any point on $A C$. If Y, Z, U and Y are the middle points of $A X, X C, A B$ and $B C$ respectively, then prove that $U Y|\mid V Z$ and $U V| \mid Y Z$.

Solution:

Given: In $\triangle A B C, Y, Z, U$ and V are mid-points of $A X, X C$,
$A B$ and $B C$.
To prove: UY || VZ and UV || YZ
Construction: Join BX
Proof: In $\triangle \mathrm{ABX}$,

$$
\begin{array}{rlrl}
\mathrm{AU} & =\mathrm{UB}, \text { i.e. } \frac{\mathrm{AU}}{\mathrm{UB}}=\frac{1}{1} \\
\text { and } & & \mathrm{AY} & =\mathrm{YX}, \text { i.e. } \frac{\mathrm{AY}}{\mathrm{YX}}=\frac{1}{1} \\
\therefore \quad & \frac{\mathrm{AU}}{\mathrm{UB}} & =\frac{\mathrm{AY}}{\mathrm{YX}}
\end{array}
$$

So, UY || BX
Similarly, in $\triangle B C X$,

$$
B X \| V Z
$$

\therefore From (i) and (ii)
UY || VZ
In $\triangle A B C$,

$$
\frac{B U}{U A}=\frac{B V}{V C}=\frac{1}{1}
$$

\therefore By converse of B.P.T.,
UV || YZ
From equation (iii) and (iv), UY || VZ and UV || YZ.

In $\triangle A B C, Z B=90^{\circ}, B D \perp A C, \operatorname{ar}(\triangle A B C)=A$ and $B C=a$, then prove that
$\mathbf{B D}=\frac{2 A a}{\sqrt{4 A^{2}+a^{4}}}$
Solution:

In $\triangle A B C, \angle B=90^{\circ}, B D \perp A C$, ar $(\triangle A B C)=A$ and $B C=a$, then prove that
$\mathrm{BD}=\frac{2 \mathrm{~A} a}{\sqrt{4 \mathrm{~A}^{2}+a^{4}}}$
Given: Area of $\triangle A B C=A$

In $\triangle A D B$ and $\triangle A B C$

$$
\angle \mathrm{ADB}=\angle \mathrm{ABC}=90^{\circ}
$$

.-(i)

$$
\angle \mathrm{BAD}=\angle \mathrm{BAC}
$$

[Common]
. By AA similarity criterion, $\triangle \mathrm{ADB} \sim \triangle \mathrm{ABC}$

$$
\begin{equation*}
\frac{A B}{A C}=\frac{B D}{B C} \tag{ii}
\end{equation*}
$$

In $\triangle \mathrm{ABC}, \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$
$\frac{4 \mathrm{~A}^{2}}{a^{2}}+a^{2}=\mathrm{AC}^{2}$
$\mathrm{AC}=\sqrt{\frac{4 \mathrm{~A}^{2}+a^{4}}{a^{2}}}=\frac{\sqrt{4 \mathrm{~A}^{2}+a^{4}}}{a}$
From (i) and (ii), we get
$\frac{2 \mathrm{~A}}{a \times \mathrm{AC}}=\frac{\mathrm{BD}}{a}$
$\mathrm{BD}=\frac{2 \mathrm{~A}}{\mathrm{AC}}=\frac{2 \mathrm{~A} a}{\sqrt{4 \mathrm{~A}^{2}+a^{4}}}$

In the figure, $D B \perp B C, D E \perp A B$ and $A C \perp B C$ prove that
$\frac{\mathrm{BE}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{BC}}$
Solution:
Given $\mathrm{DB} \perp \mathrm{BC}$, i.e. $\angle 1+\angle 2=90^{\circ}$
$\mathrm{DE} \perp \mathrm{AB}$, i.e. $\angle \mathrm{E}=90^{\circ}$
$\mathrm{AC} \perp \mathrm{BC}$, i.c. $\angle \mathrm{C}=90^{\circ}$
To prove: $\frac{\mathrm{BE}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{BC}}$
Proof: In $\triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}$

$$
\begin{array}{ll}
\text { Also, } & \angle \mathrm{A}+\angle 2=90^{\circ} \\
\angle 1+\angle 2=90^{\circ} \text { (given) } \tag{ii}
\end{array}
$$

From (i) and (ii), we get

$$
\Rightarrow \begin{aligned}
\Rightarrow & & \angle 1+\angle 2 & =\angle 2+\angle \mathrm{A} \\
\Rightarrow & & \angle 1 & =\angle \mathrm{A}
\end{aligned}
$$

Now, in $\triangle D E B$ and $\triangle B C A$

$$
\angle \mathrm{E}=\angle \mathrm{C}
$$

$$
\angle 1=\angle A
$$

$$
\text { (Each } 90^{\circ} \text {) }
$$

$$
\therefore \quad \triangle \mathrm{DEB}-\triangle \mathrm{BCA}
$$

$$
\Rightarrow \quad \frac{\mathrm{BE}}{\mathrm{AC}}=\frac{\mathrm{DE}}{\mathrm{BC}} \Rightarrow \frac{\mathrm{BE}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{BC}}
$$

The area of two similar triangles are $49 \mathrm{~cm}^{2}$ and $64 \mathrm{~cm}^{2}$ respectively. If the difference of the corresponding altitudes is 10 cm , then find the lengths of altitudes (in centimetres).

Solution:

$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
(Given)
$\begin{aligned} \therefore & \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})} & =\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}} \\ \Rightarrow & \frac{49}{64} & =\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}} \Rightarrow \frac{\mathrm{BC}}{\mathrm{EF}}=\frac{7}{8}\end{aligned}$

Also $\quad \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{\frac{1}{2} \mathrm{BC} \times \mathrm{AM}}{\frac{1}{2} \mathrm{EF} \times \mathrm{DN}} \Rightarrow \frac{49}{64}=\frac{\mathrm{BC}}{\mathrm{EF}} \times \frac{\mathrm{AM}}{\mathrm{DN}}$
$\Rightarrow \quad \frac{49}{64}=\frac{7}{8} \times \frac{\mathrm{AM}}{\mathrm{DN}} \Rightarrow \frac{7}{8}=\frac{\mathrm{AM}}{\mathrm{DN}} \Rightarrow \mathrm{DN}=\frac{8}{7} \mathrm{AM}$
Also
$\mathrm{DN}-\mathrm{AM}=10$
$\Rightarrow \quad \frac{8}{7} \mathrm{AM}-\mathrm{AM}=10 \Rightarrow \frac{1}{7} \mathrm{AM}=10$
$\mathrm{AM}=70 \mathrm{~cm}$
$\therefore \quad \mathrm{DN}=80 \mathrm{~cm}$

If BL and CM are medians of a triangle ABC right angled at A , then prove thal4($\mathrm{BL} \mathrm{L}^{2}+$ $\left.C M^{2}\right)=5 B C^{2}$

Solution:

Given: A right angled triangle ABC , right angled at A .
BL and CM are the medians.
To prove: $4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)=5 \mathrm{BC}^{2}$
Proof: In right angled triangle CAB
$\mathrm{BC}^{2}=\mathrm{AC}^{2}+\mathrm{AB}^{2}$ [By Pythagoras theorem $] \ldots(i)$
In right-angled triangle CAM,
$\mathrm{CM}^{2}=\mathrm{AC}^{2}+\mathrm{AM}^{2}$
Also, $\quad \mathrm{AM}=\frac{1}{2} \mathrm{AB}$
$\therefore \quad \mathrm{CM}^{2}=\mathrm{AC}^{2}+\left(\frac{1}{2} \mathrm{AB}\right)^{2}$
$\Rightarrow \quad 4 \mathrm{CM}^{2}=4 \mathrm{AC}^{2}+\mathrm{AB}^{2}$

[As CM is median]

In right-angled triangle LAB ,
$\mathrm{BL}^{2}=\mathrm{AL}^{2}+\mathrm{AB}^{2}$
Also, $\quad \mathrm{AL}=\frac{1}{2} \mathrm{AC}$
[As BL is median]
$\therefore \quad \mathrm{BL}^{2}=\left(\frac{1}{2} \mathrm{AC}\right)^{2}+\mathrm{AB}^{2}$
$\Rightarrow \quad 4 \mathrm{BL}^{2}=\mathrm{AC}^{2}+4 \mathrm{AB}^{2}$
...(iii)
Adding (ii) and (iii), we get
$4 \mathrm{BL}^{2}+4 \mathrm{CM}^{2}=5 \mathrm{AC}^{2}+5 \mathrm{AB}^{2}$
$\Rightarrow \quad 4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)=5\left(\mathrm{AC}^{2}+\mathrm{AB}^{2}\right)$
$\Rightarrow \quad 4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)=5 \mathrm{BC}^{2}$
[From (i)] Hence proved.
Prove that the ratio of the areas of two similar trangles is equal to the square of the ratio of their corresponding sides.
Using the above, prove the following:
If the areas of two similar triangles are equal, then prove that the triangles are congruent.

Solution:

To prove: $\triangle \mathrm{ABC} \approx \triangle \mathrm{PQR}$
Proof: Using the above result, we have

$$
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{PR}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}
$$

Also

$$
\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{POR})
$$

$\Rightarrow \quad \mathrm{AB}=\mathrm{PQ}, \mathrm{AC}=\mathrm{PR}, \mathrm{BC}=\mathrm{QR}$
\Rightarrow
$\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$

Prove that the ratio of the areas of two similar triangles is equal to the square of the ratic of their corresponding sides. Using the above, do the following:
$A D$ is an altitude of an equilateral triangle $A B C$. $O n A D$ as base, another equilateral triangle $A D E$ is constructed. Prove that, area $(\triangle A D E)$: area $(\triangle A B C)=3: 4$

Solution:

$\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADE}$ are equilateral triangles.
where

$$
\begin{align*}
\frac{\operatorname{ar} \triangle \mathrm{ABC}}{\operatorname{ar} \triangle \mathrm{ADE}} & =\frac{(\mathrm{AB})^{2}}{(\mathrm{AD})^{2}} \tag{i}\\
\mathrm{AD} & =\frac{\sqrt{3}}{2} \mathrm{AB}
\end{align*}
$$

Putting in equation (i)

$$
\begin{aligned}
& \frac{\operatorname{ar} \triangle \mathrm{ABC}}{\operatorname{ar} \triangle \mathrm{ADE}}=\left|\frac{(\mathrm{AB})^{2}}{\left(\frac{\sqrt{3}}{2} \mathrm{AB}\right)^{2}}\right|=\left(\frac{2}{\sqrt{3}} \cdot \frac{\mathrm{AB}}{\mathrm{AB}}\right)^{2} \\
& \frac{\operatorname{ar} \triangle \mathrm{ABC}}{\operatorname{ar} \triangle \mathrm{ADE}}=\frac{4}{3}
\end{aligned}
$$

In figure, $\mathrm{AD} \perp \mathrm{BC}$ and $\mathrm{BD}=1 / 3 \mathrm{CD}$.

Prove that $2 \mathrm{CA}^{2}=2 \mathrm{AB}^{2}+\mathrm{BC}^{2}$

Solution:

In figure, $\mathrm{AD} \perp \mathrm{BC}$ and $\mathrm{BD}=\frac{1}{3} \mathrm{CD}$.
Prove that $2 \mathrm{CA}^{2}=2 \mathrm{AB}^{2}+\mathrm{BC}^{2}$.
Given: In $\triangle A B C, A D \perp B C$ and $B D=\frac{1}{3} C D$
To prove: $\quad 2 \mathrm{CA}^{2}=2 \mathrm{AB}^{2}+\mathrm{BC}^{2}$
[All India]

$\mathrm{BC}=\frac{1}{3} \mathrm{CD}+\mathrm{CD}=\frac{4}{3} \mathrm{CD}$
$C D=\frac{3}{4} B C$
\ldots (i)
In right angled $\triangle A D C$,
$\mathrm{AC}^{2}=\mathrm{CD}^{2}+\mathrm{AD}^{2}$
[By Pythagoras theorem] ...(ii)
In right angled $\triangle A D B$

$$
\begin{aligned}
& \mathrm{AB}^{2}
\end{aligned}=\mathrm{AD}^{2}+\mathrm{BD}^{2}{ }^{2}
$$

Substituting in (ii), we get
$\Rightarrow \quad A C^{2}=\mathrm{CD}^{2}+\mathrm{AB}^{2}-\mathrm{BD}^{2}$
$\Rightarrow \quad \mathrm{AC}^{2}=\mathrm{CD}^{2}+\mathrm{AB}^{2}-\left(\frac{1}{3} \mathrm{CD}\right)^{2} \quad\left[\right.$ Put $\left.\mathrm{BD}=\frac{1}{3} \mathrm{CD}\right]$
$\Rightarrow \quad \mathrm{AC}^{2}=\mathrm{CD}^{2}-\frac{1}{9} \mathrm{CD}^{2}+\mathrm{AB}^{2}$
$\Rightarrow \quad \mathrm{AC}^{2}=\frac{8}{9} \mathrm{CD}^{2}+\mathrm{AB}^{2}$
$\Rightarrow \quad \mathrm{AC}^{2}=\frac{8}{9}\left(\frac{3}{4} \mathrm{BC}\right)^{2}+\mathrm{AB}^{2}$
$\Rightarrow \quad \mathrm{AC}^{2}=\frac{8}{9} \times \frac{9}{16} \mathrm{BC}^{2}+\mathrm{AB}^{2}$
$\Rightarrow \quad \mathrm{AC}^{2}=\frac{1}{2} \mathrm{BC}^{2}+\mathrm{AB}^{2}$
$\Rightarrow \quad 2 \mathrm{AC}^{2}=\mathrm{BC}^{2}+2 \mathrm{AB}^{2} \quad$ Hence proved.

