x

MATHEMATICS

COMPLETE QUESTION BANK

DISCLAIMER- Please Watch Complete Video before solving this question bank. (Nuksaan tumhara hi hoga varna)

Youtube.com/Shobhit Nirwan

CIRCLES+AREAS RELATED TO CIRCLES

- CIRCLES-

NCERT:

PROOF OF-

Theorem 10.1 : The tangent at any point of a circle is perpendicular to the radius through the point of contact.

Theorem 10.2 : The lengths of tangents drawn from an external point to a circle are equal.

EXERCISE 10.1

2. Fill in the blanks (THESE CAN BE CONVERTED INTO MCQ IN BOARDS)
(i) A tangent to a circle intersects it in \qquad point (s).
(ii) A line intersecting a circle in two points is called a \qquad .
(iii) A circle can have \qquad parallel tangents at the most.
(iv) The common point of a tangent to a circle and the circle is called \qquad .
3. A tangent $P Q$ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that $O Q=12 \mathrm{~cm}$. Length $P Q$ is :
(D)V119
4. Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle.

EXERCISE 10.2

n Q. 1 to 3, choose the correct option and give justification.

1. From a point Q , the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm . The radius of the circle is
(A) 7 cm
(B) 12 cm
(C) 15 cm
(D) 24.5 cm
2. In Fig. 10.11, if TP and TQ are the two tangents to a circle with centre O so that $\angle \mathrm{POQ}=110^{\circ}$, then $\angle \mathrm{PTQ}$ is equal to
(A) 60°
(B) 70°
(C) 80°
(D) 90°

Fig. 10.11
3. If tangents $P A$ and $P B$ from a point P to a circle with centre O are inclined to each other at angle of 80°, then $\angle \mathrm{POA}$ is equal to
(A) 50°
(B) 60°
(C) 70°
(D) 80°
5. Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.
6. The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm . Find the radius of the circle.
7. Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord of the larger circle which touches the smaller circle.
11. Prove that the parallelogram circumscribing a circle is a rhombus.
13. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

- AREAS RELATED TO CIRCLES:

NCERT:

Example 2 : Find the area of the sector of a circle with radius 4 cm and of angle 30°. Also, find the area of the corresponding major sector

Example 4 : In Fig. 12.15, two circular flower beds have been shown on two sides of a square lawn $A B C D$ of side 56 m . If the centre of each circular flower bed is the point of intersection O of the diagonals of the square lawn, find the

sum of the areas of the lawn and the flower beds.
Fig. 12.15

Example 5 : Find the area of the shaded region in Fig. 12.16, where ABCD is a square of side 14 cm .

EXERCISE 12.1:

1. The radii of two circles are 19 cm and 9 cm respectively. Find the radius of the circle which has circumference equal to the sum of the circumferences of the two circles.
2. The radii of two circles are 8 cm and 6 cm respectively. Find the radius of the circle having area equal to the sum of the areas of the two circles.
3. The wheels of a car are of diameter 80 cm each. How many complete revolutions does each wheel make in 10 minutes when the car is travelling at a speed of 66 km per hour?
4. Tick the correct answer in the following and justify your choice :

If the perimeter and the area of a circle are numerically equal, then the radius of the circle is
(A) 2 units (B) pi units (C) 4 units (D) 7 units

EXERCISE 12.2:

2. Find the area of a quadrant of a circle whose circumference is 22 cm .
3. The length of the minute hand of a clock is 14 cm . Find the area swept by the minute hand in 5 minutes.
4. A chord of a circle of radius 15 cm subtends an angle of 60° at the centre. Find the areas of the corresponding minor and major segments of the circle.
5. A round table cover has six equal designs as shown in Fig. 12.14. If the radius of the cover is 28 cm , find the cost of making the designs at the rate of Rs 0.35 per cm 2 .

EXERCISE 12.3:

1. Find the area of the shaded region in Fig. 12.20, if radii of the two concentric circles with centre O are 7 cm and 14 cm respectively and angle AOC=40degree.

Fig. 12.20
6. In a circular table cover of radius 32 cm , a design is formed leaving an equilateral triangle ABC in the middle as shown in Fig. 12.24. Find the area of the design (shaded region).

5.From each corner of a square of side 4 cm a quadrant of a circle of radius 1 cm is cut and also a circle of diameter 2 cm is cut as shown in Fig. 12.23. Find the area of the remaining portion of the square.

10. The area of an equilateral triangle $A B C$ is 17320.5 cm 2 . With each vertex of the triangle as centre, a circle is drawn with radius equal to half the length of the side of the triangle (see Fig. 12.28). Find the area of the shaded region.

13. In Fig. 12.31, a square $O A B C$ is inscribed in a quadrant $O P B Q$. If $O A=20 \mathrm{~cm}$, find the area of the shaded region. (Use $\pi=3.14$)

Fig. 12.31

Fig. 12.32
14. AB and CD are respectively arcs of two concentric circles of radii 21 cm and 7 cm and centre O (see Fig. 12.32). If $\angle \mathrm{AOB}=30^{\circ}$, find the area of the shaded region.

PREVIOUS YEARS

2018

Prove that the lengths of tangents drawn from an external point to a circle are equal.

Find the area of the shaded region in Fig. 2, where arcs drawn with centres A, B, C and D intersect in pairs at mid-points P, Q, R and S of the sides $A B, B C, C D$ and $D A$ respectively of a square ABCD of side 12 cm . [Use $\pi=3.14$]

Area of one quadrant $=(3.14) \times \frac{36}{4}$
Area of four quadrants $=3.14 \times 36=113.04 \mathrm{~cm}^{2}$
Area of square $\mathrm{ABCD}=12 \times 12=144 \mathrm{~cm}^{2}$
Hence Area of shaded region $=144-113.04$

$$
=30.96 \mathrm{~cm}^{2}
$$

If the angle between two tangents drawn from an external point P to a circle of radius a and centre O , is 60°, then find the length of OP .
$\angle \mathrm{OPA}=30^{\circ}$
$\frac{1}{2}$
$\sin 30^{\circ}=\frac{\mathrm{a}}{\mathrm{OP}}$
$\Rightarrow \mathrm{OP}=2 \mathrm{a}$
$\frac{1}{2}$

Prove that the tangents drawn at the end points of a chord of a circle make equal angles with the chord.

Case I:
Correct Figure $\quad \frac{1}{2}$

Since $P A=P B$
Therefore in $\triangle \mathrm{PAB} \quad \frac{1}{2}$
$\angle \mathrm{PAB}=\angle \mathrm{PBA} \quad \frac{1}{2}$
Case II: If the tangents at A and B are parallel then each angle between chord and tangent $=90^{\circ}$
A circle touches all the four sides of a quadrilateral ABCD. Prove that

$$
\mathrm{AB}+\mathrm{CD}=\mathrm{BC}+\mathrm{DA}
$$

$$
\text { Here } \begin{aligned}
& \mathrm{AP}=\mathrm{AS} \\
& \mathrm{BP}=\mathrm{BQ} \\
& \mathrm{CR}=\mathrm{CQ} \\
& \mathrm{DR}=\mathrm{DS}
\end{aligned}
$$

$$
\mathrm{BP}=\mathrm{BQ} \quad 1
$$

$$
\begin{array}{ll}
\text { Adding }(\mathrm{AP}+\mathrm{PB})+(\mathrm{CR}+\mathrm{RD})=(\mathrm{AS}+\mathrm{SD})+(\mathrm{BQ}+\mathrm{QC}) & \frac{1}{2} \\
\Rightarrow \quad \mathrm{AB}+\mathrm{CD}=\mathrm{AD}+\mathrm{BC} & \frac{1}{2}
\end{array}
$$

Three semicircles each of diameter 3 cm , a circle of diameter 4.5 cm and a semicircle of radius 4.5 cm are drawn in the given figure. Find the area of the shaded region.

Area of semi-circle $\mathrm{PQR}=\frac{\pi}{2}\left(\frac{9}{2}\right)^{2}=\frac{81}{8} \pi \mathrm{~cm}^{2} \quad \frac{1}{2}$
Area of region $\mathrm{A}=\pi\left(\frac{9}{4}\right)^{2}=\frac{81}{16} \pi \mathrm{~cm}^{2} \quad \frac{1}{2}$
Area of region $(B+C)=\pi\left(\frac{3}{2}\right)^{2}=\frac{9}{4} \pi \mathrm{~cm}^{2} \quad \frac{1}{2}$
Area of region $\mathrm{D}=\frac{\pi}{2}\left(\frac{3}{2}\right)^{2}=\frac{9}{8} \pi \mathrm{~cm}^{2}$
Area of shaded region $=\left(\frac{81}{8} \pi-\frac{81}{16} \pi-\frac{9}{4} \pi+\frac{9}{8} \pi\right) \mathrm{cm}^{2}$

$$
=\frac{63}{16} \pi \mathrm{~cm}^{2} \text { or } \frac{99}{8} \mathrm{~cm}^{2}
$$

In the given figure, two concentric circles with centre O have radii 21 cm and 42 cm . If $\angle \mathrm{AOB}=60^{\circ}$, find the area of the shaded region.

[Use $\pi=\frac{22}{7}$]

Area of region $\mathrm{ABDC}=\pi \frac{00}{360} \times\left(42^{2}-21^{2}\right)$
$=\frac{22}{7} \times \frac{1}{6} \times 63 \times 21$
$=693 \mathrm{~cm}^{2}$
Area of shaded region $=\pi\left(42^{2}-21^{2}\right)-$ region ABDC

$$
\begin{aligned}
& =\frac{22}{7} \times 63 \times 21-693 \\
& =4158-693 \\
& =3465 \mathrm{~cm}^{2}
\end{aligned}
$$

Prove that the lengths of two tangents drawn from an external point to a circle are equal.

In the given figure, XY and $\mathrm{X}^{\prime} \mathrm{Y}^{\prime}$ are two parallel tangents to a circle with centre O and another tangent AB with point of contact C , is intersecting $X Y$ at A and $X^{\prime} Y^{\prime}$ at B. Prove that $\angle A O B=90^{\circ}$.

In right angled $\triangle \mathrm{POA}$ and $\triangle \mathrm{OCA}$
$\triangle \mathrm{OPA} \cong \triangle \mathrm{OCA}$
$\therefore \quad \angle \mathrm{POA}=\angle \mathrm{AOC}$
Also $\triangle \mathrm{OQB} \cong \triangle \mathrm{OCB}$
$\therefore \quad \angle \mathrm{QOB}=\angle \mathrm{BOC}$
Therefore $\angle \mathrm{AOB}=\angle \mathrm{AOC}+\angle \mathrm{COB}$

$$
\begin{aligned}
& =\frac{1}{2} \angle \mathrm{POC}+\frac{1}{2} \angle \mathrm{COQ} \\
& =\frac{1}{2}(\angle \mathrm{POC}+\angle \mathrm{COQ}) \\
& =\frac{1}{2} \times 180^{\circ} \\
& =90^{\circ}
\end{aligned}
$$

In the given figure, ABCD is a rectangle of dimensions $21 \mathrm{~cm} \times 14 \mathrm{~cm}$. A semicircle is drawn with $B C$ as diameter. Find the area and the perimeter of the shaded region in the figure.

Area of shaded region $=(21 \times 14)-\frac{1}{2} \times \pi \times 7 \times 7$
$=294-\frac{1}{2} \times \frac{22}{7} \times 7 \times 7$
$=294-77$
$=217 \mathrm{~cm}^{2}$.

Perimeter of shaded region $=21+14+21+\frac{22}{7} \times 7$
$=56+22$
$=78 \mathrm{~cm}$

$\underline{2016}$

In fig.1, PQ is a tangent at a point C to a circle with centre O . If AB is a diameter and $\angle \mathrm{CAB}=30^{\circ}$, find $\angle \mathrm{PCA}$.

For $\angle \mathrm{ACB}=90^{\circ}$
$\angle \mathrm{PCA}=60^{\circ}$

In Fig.2, a quadrilateral ABCD is drawn to circumscribe a circle, with centre O , in such a way that the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA touch the circle at the points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S respectively. Prove that. $\mathrm{AB}+\mathrm{CD}=\mathrm{BC}+\mathrm{DA}$.

Figure 2
$\mathrm{AP}=\mathrm{AS}, \mathrm{BP}=\mathrm{BQ}, \mathrm{CR}=\mathrm{CQ}$ and $\mathrm{DR}=\mathrm{DS}$
$\mathrm{AP}+\mathrm{BP}+\mathrm{CR}+\mathrm{DR}=\mathrm{AS}+\mathrm{BQ}+\mathrm{CQ}+\mathrm{DS} \Rightarrow \mathrm{AB}+\mathrm{CD}=\mathrm{AD}+\mathrm{BC}$
In Fig. 3, from an external point P, two tangents PT and PS are drawn to a circle with centre O and radius r . If $\mathrm{OP}=2 \mathrm{r}$, show that $\angle \mathrm{OTS}=\angle \mathrm{OST}=30^{\circ}$.

Figure 3
Let $\angle \mathrm{TOP}=\theta \therefore \cos \theta=\frac{\mathrm{OT}}{\mathrm{OP}}=\frac{\mathrm{r}}{2 \mathrm{r}}=\frac{1}{2} \therefore \theta=60^{\circ}$ Hence $\angle \mathrm{TOS}=120^{\circ}$
In $\triangle \mathrm{OTS}, \mathrm{OT}=\mathrm{OS} \Rightarrow \angle \mathrm{OTS}=\angle \mathrm{OST}=30^{\circ}$

In fig.4, O is the centre of a circle such that diameter $\mathrm{AB}=13 \mathrm{~cm}$ and $\mathrm{AC}=12 \mathrm{~cm} . \mathrm{BC}$ is joined. Find the area of the shaded region. (Take $\pi=3.14$)

Figure 4
$\mathrm{BC}^{2}=\mathrm{AB}^{2}-\mathrm{AC}^{2}=169-144=25 \therefore \mathrm{BC}=5 \mathrm{~cm}$
Area of the shaded region $=$ Area of semicircle - area of rt. $\triangle \mathrm{ABC}$

$$
\begin{aligned}
& =\frac{1}{2}(3.14)\left(\frac{13}{2}\right)^{2}-\frac{1}{2} \cdot 12 \times 5 \\
& =66.33-30=36.33 \mathrm{~cm}^{2}
\end{aligned}
$$

In fig. 6, find the area of the shaded region, enclosed between two concentric circles of radii 7 cm and 14 cm where $\angle \mathrm{AOC}=40^{\circ}$. (Use $\pi=\frac{22}{7}$)

Figure 6
Shaded area $=\pi\left(14^{2}-7^{2}\right) \times \frac{320}{360}$

$$
\begin{aligned}
& =\frac{22}{7} \times 147 \times \frac{8}{9} \\
& =\frac{1232}{3}=410.67 \mathrm{~cm}^{2}
\end{aligned}
$$

Prove that the lengths of the tangents drawn from an external point to a circle are equal.

In Fig. 7, two equal circles, with centres O and O^{\prime}, touch each other at X.OO' produced meets the circle with centre O^{\prime} at A . AC is tangent to the circle with centre O, at the point C. O'D is perpendicular to AC. Find the value of $\frac{\mathrm{DO}^{\prime}}{\mathrm{CO}}$.

figure 7

AC is tangent to circle with centre 0 ,
Thus $\angle \mathrm{ACO}=90^{\circ}$
$\therefore \quad \Delta \mathrm{AO}^{\prime} \mathrm{D} \sim \Delta \mathrm{AOC}$
$\Rightarrow \quad \frac{\mathrm{AO}^{\prime}}{\mathrm{AO}}=\frac{\mathrm{DO}^{\prime}}{\mathrm{CO}}$
$\therefore \quad \frac{\mathrm{DO}^{\prime}}{\mathrm{CO}}=\frac{\mathrm{r}}{3 \mathrm{r}}=\frac{1}{3}$
In Fig. 9, is shown a sector OAP of a circle with centre O , containing $\angle \theta$. AB is perpendicular to the radius OA and meets OP produced at B . Prove that the perimeter of shaded region is $r\left[\tan \theta+\sec \theta+\frac{\pi \theta}{180}-1\right]$

Length of are $\overparen{A P}=2 \pi \mathrm{r} \frac{\theta}{360}$ or $\frac{\pi \mathrm{r} \theta}{180}$
$\frac{A B}{r}=\tan \theta \Rightarrow A B=r \tan \theta$
$\frac{\mathrm{OB}}{\mathrm{r}}=\sec \theta \Rightarrow \mathrm{OB}=\mathrm{r} \sec \theta$
$\mathrm{PB}=\mathrm{OB}-\mathrm{r}=\mathrm{r} \sec \theta-\mathrm{r}$
Perimeter $=\mathrm{AB}+\mathrm{PB}+\overparen{\mathrm{AP}}$

$$
=r \tan \theta+r \sec \theta-r+\frac{\pi r \theta}{180}
$$

or $\quad r\left[\tan \theta+\sec \theta-1+\frac{\pi \theta}{180}\right]$

2015

In Figure 2, PQ is a chord of a circle with centre O and PT is a tangent. If $\angle \mathrm{QPT}=60^{\circ}$, find $\angle \mathrm{PRQ}$.

In Figure 3, two tangents $R Q$ and $R P$ are drawn from an external point R to the circle with centre O. If $\angle P R Q=120^{\circ}$, then prove that $O R=P R+R Q$.

Figure 3

$$
\begin{array}{rlr}
\angle \mathrm{POR}=90-60=30^{\circ} & 1 / 2 \mathrm{~m} \\
\frac{\mathrm{PRO}}{\mathrm{OR}}=\sin 30^{\circ}=\frac{1}{2} \Rightarrow \mathrm{OR} & =2 \mathrm{PR} & \\
& =\mathrm{PR}+\mathrm{QR} & 1 / 2 \mathrm{~m}
\end{array}
$$

In Figure 4, a triangle ABC is drawn to circumscribe a circle of radius 3 cm , such that the segments BD and DC are respectively of lengths 6 cm and 9 cm . If the area of $\triangle \mathrm{ABC}$ is $54 \mathrm{~cm}^{2}$, then find the lengths of sides AB and AC .

Figure 4

$$
\begin{aligned}
& \text { Let } \mathrm{AF}=\mathrm{AE}=\mathrm{x} \\
& \therefore \mathrm{AB}=6+\mathrm{x}, \mathrm{AC}=9+\mathrm{x}, \mathrm{BC}=15 \\
& \frac{1}{2}[15+6+\mathrm{x}+9+\mathrm{x}] \cdot 3=54 \\
& 1 / 2 \mathrm{~m} \\
& \Rightarrow \mathrm{x}=3 \therefore \mathrm{AB}=9 \mathrm{~cm}, \mathrm{AC}=12 \mathrm{~cm} \\
& 1 \mathrm{~m} \\
&
\end{aligned}
$$

$$
\text { and } \mathrm{BC}=15 \mathrm{~cm}
$$

Find the area of the minor segment of a circle of radius 14 cm , when its central angle is 60°. Also find the area of the corresponding major segment. [Use $\pi=\frac{22}{7}$]

Area of minor segment $=\pi r^{2} \frac{\theta}{360}-\frac{1}{2} r^{2} \sin \theta$
$=\frac{22}{7} \times 14 \times 14 \times \frac{60}{360}-\frac{1}{2} \times 14 \times 14 \times \frac{\sqrt{3}}{2}$
$=\left(\frac{308}{3}-49 \sqrt{3}\right) \mathrm{cm}^{2}$ or $17.89 \mathrm{~cm}^{2}$ or $17.9 \mathrm{~cm}^{2}$ Approx.
1 m
Area of Major segment

$$
\begin{array}{cc}
=\pi r^{2}-\left(\frac{308}{3}-49 \sqrt{3}\right) & 1 / 2 \mathrm{~m} \\
=\left(\frac{1540}{3}+49 \sqrt{3}\right) \mathrm{cm}^{2} \text { or } 598.10 \mathrm{~cm}^{2} & 1 / 2 \mathrm{~m} \\
\text { or } 598 \mathrm{~cm}^{2} \text { Approx. }
\end{array}
$$

Prove that the tangent drawn at the mid-point of an arc of a circle is parallel to the chord joining the end points of the arc.

Prove that the tangent drawn at the mid-point of an arc of a circle is parallel to the chord joining the end points of the arc.

In Figure 5, PQRS is a square lawn with side $\mathrm{PQ}=42$ metres. Two circular flower beds are there on the sides PS and QR with centre at O , the intersection of its diagonals. Find the total area of the two flower beds (shaded parts).

Figure 5
Radius of circle with centre O is OR
let $\mathrm{OR}=\mathrm{x} \quad \therefore \mathrm{x}^{2}+\mathrm{x}^{2}=(42)^{2} \Rightarrow \mathrm{x}=21 \sqrt{2} \mathrm{~m}$.
Area of one flower bed $=$ Area of segment of circle with

$$
\begin{aligned}
& \quad \text { centre angle } 90^{\circ} \\
& =\frac{22}{7} \times 21 \sqrt{2} \times 21 \sqrt{2} \times \frac{90}{360}-\frac{1}{2} \times 21 \sqrt{2} \times 21 \sqrt{2} \\
& =693-441=252 \mathrm{~m}^{2}
\end{aligned}
$$

$\therefore \quad$ Area of two flower beds $=2 \times 252=504 \mathrm{~m}^{2}$

Two circles touch each other externally at $\mathrm{P} . \mathrm{AB}$ is a common tangent to the circles touching them at A and B . The value of $\angle \mathrm{APB}$ is
(A) 30°
(B) 45°
(C) 60°
(D) 90°

Correct answer: D

$\mathrm{TA}=\mathrm{TP} \Rightarrow \angle \mathrm{TAP}=\angle \mathrm{TPA}$
$\mathrm{TB}=\mathrm{TP} \Rightarrow \angle \mathrm{TBP}=\angle \mathrm{TPB}$
$\therefore \angle \mathrm{TAP}+\angle \mathrm{TBP}=\angle \mathrm{TPA}+\angle \mathrm{TPB}=\angle \mathrm{APB}$
$\angle \mathrm{TAP}+\angle \mathrm{TBP}+\angle \mathrm{APB}=180^{\circ} \quad\left[\because\right.$ sum of..... $\left.180^{\circ}\right]$
$\therefore \angle \mathrm{APB}+\angle \mathrm{APB}=180^{\circ}$
$\therefore 2 \angle \mathrm{APB}=180^{\circ}$
$\therefore \angle \mathrm{APB}=90^{\circ}$
A chord of a circle of radius 10 cm subtends a right angle at its centre. The length of the chord (in cm) is
(A) $5 \sqrt{2}$
(B) $10 \sqrt{2}$
(C) $\frac{5}{\sqrt{2}}$
(D) $10 \sqrt{3}$

Correct answer: B

Given $\angle \mathrm{AOB}$ is given as 90°
$\triangle A O B$ is an isosceles triangle since $O A=O B$
Therefore $\angle \mathrm{OAB}=\angle \mathrm{OBA}=45^{\circ}$
Thus $\angle \mathrm{AOP}=45^{\circ}$ and $\angle \mathrm{BOP}=45^{\circ}$
Hence $\triangle A O P$ and $\triangle B O P$ also are isosceles triangles
Thus let $A P=P B=O P=x$
Using Pythagoras theorem
$x^{2}+x^{2}=10^{2}$
Thus $2 \mathrm{x}^{2}=100$
$\mathrm{x}=5 \sqrt{2}$
Hence length of chord $\mathrm{AB}=2 \mathrm{x}=10 \sqrt{2}$

In Figure 1, common tangents AB and CD to the two circles with centres O_{1} and O_{2} intersect at E . Prove that $\mathrm{AB}=\mathrm{CD}$.

Figure 1

Solution:

Given: AB and CD are common tangents to both the circles.
To prove: $\mathrm{AB}=\mathrm{CD}$
Proof:
We know that two tangents drawn to a circle for the same exterior point are equal.
Thus we get $\mathrm{AE}=\mathrm{EC}$
Similarly ED $=$ EB
$\mathrm{AB}=\mathrm{AE}+\mathrm{EB}$ and $\mathrm{CD}=\mathrm{ED}+\mathrm{EC}$
Since $A E=E C$ we can write $A B=E C+E B$
And since $\mathrm{ED}=\mathrm{EB}$ we get $\mathrm{CD}=\mathrm{EB}+\mathrm{EC}$
Therefore $A B=C D$
Hence proved.

The incircle of an isosceles triangle ABC , in which $\mathrm{AB}=\mathrm{AC}$, touches the sides BC, CA and AB at D, E and F respectively. Prove that $\mathrm{BD}=\mathrm{DC}$.

Given: $\triangle \mathrm{ABC}$ is an isosceles triangle with a circle inscribed in the triangle.
To prove: $\mathrm{BD}=\mathrm{DC}$
Proof:
AF and AE are tangents drawn to the circle from point A .
Since two tangents drawn to a circle from the same exterior point are equal,
$\mathrm{AF}=\mathrm{AE}=\mathrm{a}$
Similarly $\mathrm{BF}=\mathrm{BD}=\mathrm{b}$ and $\mathrm{CD}=\mathrm{CE}=\mathrm{c}$
We also know that $\triangle \mathrm{ABC}$ is an isosceles triangle
Thus $A B=A C$,
$a+b=a+c$
Thus $\mathrm{b}=\mathrm{c}$
Therefore, BD = DC
Hence proved.

In Figure $2, \mathrm{ABCD}$ is a trapezium of area 24.5 sq. cm . In it, $\mathrm{AD} \| \mathrm{BC}, \angle \mathrm{DAB}=90^{\circ}$, $A D=10 \mathrm{~cm}$ and $B C=4 \mathrm{~cm}$. If $A B E$ is a quadrant of a circle, find the area of the shaded region. $\left[\right.$ Take $\left.\pi=\frac{22}{7}\right]$

Solution:
Area of trapezium $=24.5 \mathrm{~cm}^{2}$
$1 / 2[A D+B C] \times A B=24.5 \mathrm{~cm}^{2}$
$1 / 2[10+4] \times \mathrm{AB}=24.5$
$\mathrm{AB}=3.5 \mathrm{~cm}$
$\mathrm{r}=3.5 \mathrm{~cm}$
Area of quadrant $=1 / 4 \times \mathrm{pi} \times \mathrm{r}^{2}=0.25 \times 22 / 7 \times 3.5 \times 3.5=9.625 \mathrm{~cm}^{2}$
The area of shaded region $=24.5-9.625=14.875 \mathrm{~cm}^{2}$

In Figure 3, two concentric circles with centre $\mathbf{0}$, have radii 21 cm and 42 cm . If $\angle A O B=60^{\circ}$, find the area of the shaded region. [Use $\left.\pi=\frac{22}{7}\right]$

The area of shaded region $=$ Area of ring - Area of $A B C D$
$=\left[\pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)\right] \cdot\left[\pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)\right] \times(\theta / 360)$
$=\left[\pi\left(R^{2}-r^{2}\right)\right][1-(\theta / 360)]$
$=[22 / 7(422-212)][1-(60 / 360)]=3465 \mathrm{~cm}^{2}$
Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.

Construction: Take a point B, other than A, on the tangent 1 . Join OB. Suppose OB meets the circle in C

Proof: We know that, among all line segment joining the point O to a point on I, the perpendicular is shortest to l.
$O A=O C$ (Radius of the same circle)
Now, $\mathrm{OB}=\mathrm{OC}+\mathrm{BC}$.
$\therefore \mathrm{OB}>\mathrm{OC}$
$\Rightarrow \mathrm{OB}>\mathrm{OA}$
$\Rightarrow O A<O B$

Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

2013

In fig., a circle with centre O is inscribed in a quadrilateral $A B C D$ such that, it touches the sides $B C, A B, A D$ and $C D$ at points P, Q, R and S respectively, If $A B=29 \mathrm{~cm}, A D=23 \mathrm{~cm}, \angle B=90^{\circ}$ and $D S=5 \mathrm{~cm}$, then the radius of the circle (in cm) is
(A) 11
(B) 18
(C) 6
(D) 15

Given: $A B, B C, C D$ and $A D$ are tangents to circle with centre O at Q, P, S and R respectively.
$A B=29 \mathrm{~cm}, A D=23, D S=5 \mathrm{~cm}$ and $\angle B=90^{\circ}$
Construction: Join PQ.

We know that, the lengths of the tangents drawn from an external point to a circle are equal.
$D S=D R=5 \mathrm{~cm}$
$\therefore A R=A D-D R=23 \mathrm{~cm}-5 \mathrm{~cm}=18 \mathrm{~cm}$
$A Q=A R=18 \mathrm{~cm}$
$\therefore \mathrm{QB}=\mathrm{AB}-\mathrm{AQ}=29 \mathrm{~cm}-18 \mathrm{~cm}=11 \mathrm{~cm}$
$\mathrm{QB}=\mathrm{BP}=11 \mathrm{~cm}$
In $\triangle P Q B$,
$\mathrm{PQ}^{2}=\mathrm{QB}^{2}+\mathrm{BP}^{2}=(11 \mathrm{~cm})^{2}+(11 \mathrm{~cm})^{2}=2 \times(11 \mathrm{~cm})^{2}$
$P Q=11 \sqrt{2} \mathrm{~cm}$
In $\triangle \mathrm{OPQ}$,
$\mathrm{PQ}^{2}=O Q^{2}+\mathrm{OP}^{2}=\mathrm{r}^{2}+\mathrm{r}^{2}=2 \mathrm{r}^{2}$
$(11 \sqrt{2})^{2}=2 r^{2}$
$121=r^{2}$
$r=11$
Thus, the radius of the circle is 11 cm .
In fig., PA and PB are two tangents drawn from an external point P to a circle with centre C and radius 4 cm . If PA $\perp \mathrm{PB}$, then the length of each tangent is
(A) 3 cm
(B) 4 cm
(C) 5 cm
(D) 6 cm

Correct answer: B
$\mathrm{AP} \perp \mathrm{PB} \quad$ (Given)
$\mathrm{CA} \perp \mathrm{AP}, \mathrm{CB} \perp \mathrm{BP}$ (Since radius is perpendicular to tangent)
$A C=C B=$ radius of the circle
Therefore, APBC is a square having side equal to 4 cm .
Therefore, length of each tangent is 4 cm .
. If the difference between the circumference and the radius of a circle is 37 cm , then using $\pi=\frac{22}{7}$, the circumference (in cm) of the circle is:
(A) 154
(B) 44
(C) 14
(D) 7

Correct answer: B
Let r be the radius of the circle.
From the given information, we have
$2 \pi r-r=37 \mathrm{~cm}$
$\Rightarrow \mathrm{r} 2 \pi-1=37 \mathrm{~cm}$
$\Rightarrow r\left(2 \times \frac{22}{7}-1\right)=37 \mathrm{~cm}$
$\Rightarrow r \times \frac{37}{7}=37 \mathrm{~cm}$
$\Rightarrow \mathrm{r}=7 \mathrm{~cm}$
\therefore Circumference of the circle $=2 \pi r=2 \times \frac{22}{7} \times 7 \mathrm{~cm}=44 \mathrm{~cm}$

Prove that the parallelogram circumscribing a circle is a rhombus.

Two circular pieces of equal radii and maximum area, touching each other are cut out from a rectangular card board of dimensions $14 \mathrm{~cm} \times 7 \mathrm{~cm}$. Find the area of the remaining card board. [Use $\left.\pi=\frac{22}{7}\right]$

Dimension of the rectangular card board $=14 \mathrm{~cm} \times 7 \mathrm{~cm}$
Since, two circular pieces of equal radii and maximum area touching each other are cut from the rectangular card board, therefore, the diameter of each of each circular piece is $\frac{14}{2}=7 \mathrm{~cm}$.

Radius of each circular piece $=\frac{7}{2} \mathrm{~cm}$.
\therefore Sum of area of two circular pieces $=2 \times \pi\left(\frac{7}{2}\right)^{2}=2 \times \frac{22}{7} \times \frac{49}{4}=77 \mathrm{~cm}^{2}$
Area of the remaining card board
$=$ Area of the card board - Area of two circular pieces
$=14 \mathrm{~cm} \times 7 \mathrm{~cm}-77 \mathrm{~cm}^{2}$
$=98 \mathrm{~cm}^{2}-77 \mathrm{~cm}^{2}$
$=21 \mathrm{~cm}^{2}$

In fig., a circle is inscribed in triangle $A B C$ touches its sides $A B, B C$ and $A C$ at points D, E and F respectively. If $A B=12 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $A C=10$ cm , then find the length of $A D, B E$ and $C F$.

Given: $A B=12 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $A C=10 \mathrm{~cm}$.
Let, $A D=A F=x \mathrm{~cm}, B D=B E=y \mathrm{~cm}$ and $C E=C F=z \mathrm{~cm}$
(Tangents drawn from an external point to the circle are equal in length)
$\Rightarrow 2(x+y+z)=A B+B C+A C=A D+D B+B E+E C+A F+F C=30 \mathrm{~cm}$
$\Rightarrow x+y+z=15 \mathrm{~cm}$
$A B=A D+D B=x+y=12 \mathrm{~cm}$
$\therefore z=C F=15-12=3 \mathrm{~cm}$
$A C=A F+F C=x+z=10 \mathrm{~cm}$
$\therefore y=B E=15-10=5 \mathrm{~cm}$
$\therefore x=A D=x+y+z-z-y=15-3-5=7 \mathrm{~cm}$

In a circle of radius 21 cm , an arc subtends an angle of 60° at the centre. Find: (i) the length of the arc (ii) area of the sector formed by the arc. \mid Use $\left.\pi=\frac{22}{7} \right\rvert\,$

The arc subtends an angle of 60° at the centre.
(i) $I=\frac{\theta}{360^{\circ}} \times 2 \pi \mathrm{r}=\frac{60^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 21 \mathrm{~cm}=22 \mathrm{~cm}$
(ii) Area of the sector $=\frac{\theta}{360^{\circ}} \times \pi r^{2}=\frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 21 \times 21 \mathrm{~cm}^{2}=2$

In Fig., $A B$ and $C D$ are two diameters of a circle with centre O, which perpendicular to each other. $O B$ is the diameter of the smaller circle. If $=7 \mathrm{~cm}$, find the area of the shaded region. Use $\left.\pi=\frac{22}{7}\right]$

$A B$ and $C D$ are the diameters of a circle with centre O.
$\therefore O A=O B=O C=O D=7 \mathrm{~cm}$ (Radius of the circle)
Area of the shaded region
$=$ Area of the circle with diameter $O B+$ (Area of the semi-circle ACDA - Area of $\triangle \mathrm{ACD}$)
$=\pi\left(\frac{7}{2}\right)^{2}+\left(\frac{1}{2} \times \pi \times 7^{2}-\frac{1}{2} \times \mathrm{CD} \times \mathrm{OA}\right)$
$=\frac{22}{7} \times \frac{49}{4}+\frac{1}{2} \times \frac{22}{7} \times 49-\frac{1}{2} \times 14 \times 7$
$=\frac{77}{2}+77-49$
$=66.5 \mathrm{~cm}^{2}$

In fig., I and m are two parallel tangents to a circle with centre 0 , touching the circle at A and B respectively. Another tangent at C intersects the line I at D and m at E . Prove that $\angle \mathrm{DOE}=90^{\circ}$

Given: I and m are two parallel tangents to the circle with centre O touchinc the circle at A and B respectively. DE is a tangent at the point C, which intersects / at D and m at E .

To prove: $\angle \mathrm{DOE}=90^{\circ}$
Construction: Join OC.
Proof:

In $\triangle O D A$ and $\triangle O D C$,
$O A=O C \quad$ (Radii of the same circle)
$A D=D C \quad$ (Length of tangents drawn from an external point to a circle are equal)

DO = OD (Common side)
$\triangle O D A \cong \triangle O D C \quad$ (SSS congruence criterion)
$\therefore \angle \mathrm{DOA}=\angle \mathrm{COD}$
Similarly, $\triangle \mathrm{OEB} \cong \triangle \mathrm{OEC}$
$\therefore \angle \mathrm{EOB}=\angle \mathrm{COE}$
Now, $A O B$ is a diameter of the circle. Hence, it is a straight line.
$\angle \mathrm{DOA}+\angle \mathrm{COD}+\angle \mathrm{COE}+\angle \mathrm{EOB}=180^{\circ}$
From (1) and (2), we have:
$2 \angle C O D+2 \angle C O E=180^{\circ}$
$\Rightarrow \angle \mathrm{COD}+\angle \mathrm{COE}=90^{\circ}$
$\Rightarrow \angle \mathrm{DOE}=90^{\circ}$
Hence, proved.

Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.

2012

In Fig. 1, the sides $A B, B C$ and $C A$ of a triangle $A B C$, touch a circle at P, Q and R respectively. If $\mathrm{PA}=4 \mathrm{~cm}, \mathrm{BP}=3 \mathrm{~cm}$ and $\mathrm{AC}=11 \mathrm{~cm}$, then the length of $\mathrm{BC}(\mathrm{incm})$ is :
(A) 11
(B) 10
(C) 14

Fig. 1

In Fig 2, a circle touches the side DF of $\Delta \mathrm{EDF}$ at H and touches ED and EF produced at K and M respectively. If $\mathrm{EK}=9 \mathrm{~cm}$, then the perimeter of $\triangle \mathrm{EDF}$ (in cm) is :
(A) 18
(B) 13.5
(C) 12
(D) 9

Fig. 2

Tangents PA and PB are drawn from an external point P to two concentric circles with centre O and radii 8 cm and 5 cm respectively, as shown in Fig. 3. If $\mathrm{AP}=15 \mathrm{~cm}$, then find the length of BP .

Fig. 3

Join OP. In right $\Delta \mathrm{OAP}, \mathrm{OP}^{2}=\mathrm{AP}^{2}+\mathrm{OA}^{2}=15^{2}+8^{2}=289=17^{2}$

$$
\Rightarrow \mathrm{OP}=17 \mathrm{~cm}
$$

Again, $\mathrm{BP}^{2}=\mathrm{OP}^{2}-\mathrm{OB}^{2}=17^{2}-5^{2}=22 \times 12=264$

$$
\therefore \quad \mathrm{BP}=\sqrt{264} \text { or } 2 \sqrt{66}
$$

In Fig. 4, an isosceles triangle $A B C$, with $A B=A C$, circumscribes a circle. Prove that the point of contact P bisects the base BC .

Fig. 4

or

In Fig. 5, the chord AB of the larger of the two concentric circles, with centre O , touches the smaller circle at C . Prove that $\mathrm{AC}=\mathrm{CB}$.

Fig. 5
$\mathrm{AR}=\mathrm{AQ}, \mathrm{BR}=\mathrm{BP}$ and $\mathrm{QC}=\mathrm{PC} \quad \begin{aligned} & \text { (lengths of tangents from an } \\ & \text { external point are equal) }\end{aligned}$
$\therefore \quad \mathrm{AR}+\mathrm{BR}+\mathrm{PC}=\mathrm{AQ}+\mathrm{QC}+\mathrm{BP}$ or $\mathrm{AB}+\mathrm{PC}=\mathrm{AC}+\mathrm{BP}$

But $\mathrm{AB}=\mathrm{AC}$ (Given) $\Rightarrow \mathrm{BP}=\mathrm{PC}$ or P bisects base BC

OR

Join OC. OC $\perp \mathrm{AB}$ (A tangent is \perp to the radius at the point of contact)
Also, perpendicular from the centre of a circle to a chord bisects it

$$
\therefore \quad \mathrm{AC}=\mathrm{CB}
$$

In Fig. 6, OABC is a square of side 7 cm . If OAPC is a quadrant of a circle with centre O, then find the area of the shaded region. [Use $\pi=\frac{22}{7}$]

Fig. 6
Shaded area $=($ Area of square of side 7 cm$)-($ Area of Quadrant of circle of radius 7 cm)

$$
=\left(7^{2}-\frac{1}{4} \cdot \frac{22}{7} \times 7 \times 7\right) \mathrm{cm}^{2}=10.5 \mathrm{~cm}^{2}
$$

Prove that the parallelogram circumscribing a circle is a rhombus.

OR

Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

$$
\begin{array}{ll}
\mathrm{ABCD} \text { is a parallelogram } \\
\text { (} \mathrm{AP}+\mathrm{PB})+(\mathrm{DR}+\mathrm{CR})=(\mathrm{AS}+\mathrm{DS})+(\mathrm{BQ}+\mathrm{QC}) \\
\mathrm{OR} \\
\mathrm{AB}
\end{array}
$$

In Fig. 7, PQ and AB are respectively the ares of two concentric circles of radii 7 cm and 3.5 cm and centre O . If $\angle \mathrm{POQ}=30^{\circ}$, then find the area of the shaded region. [Use $\pi=\frac{22}{7}$]

Area of shaded region $=\frac{22}{7} \times \frac{30^{\circ}}{360^{\circ}}\left(7^{2}-\left(\frac{7}{2}\right)^{2}\right) \mathrm{cm}^{2}$

$$
\begin{aligned}
& =\left(\frac{22}{7} \times \frac{1}{42} \times \frac{24}{24}\right) \mathrm{cm}^{2} \\
& =\frac{77}{8} \text { or } 9 \frac{5}{8} \mathrm{~cm}^{2}
\end{aligned}
$$

Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.

OR

A quadrilateral ABCD is drawn to circumscribe a circle. Prove that $\mathrm{AB}+\mathrm{CD}=\mathrm{AD}+\mathrm{BC}$.

