x

MATHEMATICS

COMPLETE QUESTION BANK

DISCLAIMER- Please Watch Complete Video before solving this question bank. (Nuksaan tumhara hi hoga varna)

Youtube.com/Shobhit Nirwan

COORDINATE GEOMETRY

NCERT:

Example 2 : Show that the points $(1,7),(4,2),(-1,-1)$ and $(-4,4)$ are the vertices of a square.

Example 4 : Find a relation between x and y such that the point (x, y) is equidistant from the points $(7,1)$ and $(3,5)$.

Example 6 : Find the coordinates of the point which divides the line segment joining the points $(4,-3)$ and $(8,5)$ in the ratio $3: 1$ internally.

Example 7 : In what ratio does the point $(-4,6)$ divide the line segment joining the points $A(-6,10)$ and $B(3,-8)$?

Example 10 : If the points $A(6,1), B(8,2), C(9,4)$ and $D(p, 3)$ are the vertices of a parallelogram, taken in order, find the value of p.

Example 13 : Find the area of the triangle formed by the points $P(-1.5,3), Q(6,-2)$ and $R(-3,4)$.

Example 14 : Find the value of k if the points $A(2,3), B(4, k)$ and $C(6,-3)$ are collinear.
Example 15 : If $A(-5,7), B(-4,-5), C(-1,-6)$ and $D(4,5)$ are the vertices of a quadrilateral, find the area of the quadrilateral $A B C D$.

EXERCISE 7.1

1. Find the distance between the following pairs of points :
(i) $(a, b),(-a,-b)$
3.Determine if the points $(1,5),(2,3)$ and $(-2,-11)$ are collinear.
2. Check whether $(5,-2),(6,4)$ and $(7,-2)$ are the vertices of an isosceles triangle.
3. Find the values of y for which the distance between the points $P(2,-3)$ and $Q(10$, $y)$ is 10 units.
4. If $Q(0,1)$ is equidistant from $P(5,-3)$ and $R(x, 6)$, find the values of x. Also find the distances QR and PR.
5. Find a relation between x and y such that the point (x, y) is equidistant from the point $(3,6)$ and $(-3,4)$.

EXERCISE 7.2

1. Find the coordinates of the point which divides the join of $(-1,7)$ and $(4,-3)$ in the ratio 2 : 3 .
2. Find the coordinates of the points of trisection of the line segment joining $(4,-1)$ and ($-2,-3$).
6.If $(1,2),(4, y),(x, 6)$ and $(3,5)$ are the vertices of a parallelogram taken in order, find x and y.
3. If A and B are $(-2,-2)$ and $(2,-4)$, respectively, find the coordinates of P such that $A P=3 / 7 A B$ and P lies on the line segment $A B$.
4. Find the coordinates of the points which divide the line segment joining $A(-2,2)$ and $B(2,8)$ into four equal parts.
5. Find the area of a rhombus if its vertices are $(3,0),(4,5),(-1,4)$ and $(-2,-1)$ taken in
order.

EXERCISE 7.3

1. Find the area of the triangle whose vertices are :
(ii) $(-5,-1),(3,-5),(5,2)$
2. In each of the following find the value of ' k ', for which the points are collinear.
(i) $(7,-2),(5,1),(3, k)$
3. Find the area of the triangle formed by joining the mid-points of the sides of the triangle whose vertices are $(0,-1),(2,1)$ and $(0,3)$. Find the ratio of this area to the area of the given triangle.
4. Find the area of the quadrilateral whose vertices, taken in order, are $(-4,-2),(-3$, $-5),(3,-2)$ and $(2,3)$.

PREVIOUS YEARS

2018

Find the distance of a point $\mathrm{P}(x, y)$ from the origin.

$\mathrm{OP}=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}$
Find the ratio in which $\mathrm{P}(4, \mathrm{~m})$ divides the line segment joining the points $\mathrm{A}(2,3)$ and $B(6,-3)$. Hence find m.

```
Let AP:PB=k : 1
```

$\therefore \quad \frac{6 \mathrm{k}+2}{\mathrm{k}+1}=4$

$\Rightarrow \mathrm{k}=1$, ratio is $1: 1$
Hence $\mathrm{m}=\frac{-3+3}{2}=0$
If $\mathrm{A}(-2,1), \mathrm{B}(\mathrm{a}, 0), \mathrm{C}(4, \mathrm{~b})$ and $\mathrm{D}(1,2)$ are the vertices of a parallelogram ABCD , find the values of a and b. Hence find the lengths of its sides.

OR

If $\mathrm{A}(-5,7), \mathrm{B}(-4,-5), \mathrm{C}(-1,-6)$ and $\mathrm{D}(4,5)$ are the vertices of a quadrilateral, find the area of the quadrilateral ABCD .

ABCD is a parallelogram
\therefore diagonals AC and BD bisect each other
Therefore
Mid point of $B D$ is same as mid point of AC
$\Rightarrow\left(\frac{\mathrm{a}+1}{2}, \frac{2}{2}\right)=\left(\frac{-2+4}{2}, \frac{\mathrm{~b}+1}{2}\right)$
$\Rightarrow \frac{a+1}{2}=1$ and $\frac{b+1}{2}=1$
$\Rightarrow \mathrm{a}=1, \mathrm{~b}=1$. Therefore length of sides are $\sqrt{10}$ units each
OR

Area of quad $\mathrm{ABCD}=\mathrm{Ar} \triangle \mathrm{ABD}+\mathrm{Ar} \triangle \mathrm{BCD}$
Area of $\triangle \mathrm{ABD}=\frac{1}{2}|(-5)(-5-5)+(-4)(5-7)+(4)(7+5)|$
$=53$ sq units
Area of $\triangle \mathrm{BCD}=\frac{1}{2}|(-4)(-6-5)+(-1)(5+5)+4(-5+6)|$
$=19$ sq units
Hence area of quad. $A B C D=53+19=72$ sq units

A line intersects the y -axis and x -axis at the points P and Q respectively. If $(2,-5)$ is the mid-point of $P Q$, then find the coordinates of P and Q.

Let the coordinates of points P and Q be $(0, b)$ and $(a, 0)$ resp.

$$
\begin{aligned}
\therefore \quad \frac{a}{2} & =2 \Rightarrow a=4 \\
\frac{b}{2} & =-5 \Rightarrow b=-10
\end{aligned}
$$

$\therefore \quad P(0,-10)$ and $Q(4,0)$

2016

If the distances of $\mathrm{P}(\mathrm{x}, \mathrm{y})$ from $\mathrm{A}(5,1)$ and $\mathrm{B}(-1,5)$ are equal, then prove that $3 \mathrm{x}=2 \mathrm{y}$.

$$
\begin{aligned}
& \mathrm{PA}^{2}=\mathrm{PB}^{2} \\
& \Rightarrow \quad(\mathrm{x}-5)^{2}+(\mathrm{y}-1)^{2}=(\mathrm{x}+1)^{2}+(\mathrm{y}-5)^{2} \\
& \Rightarrow \quad 12 \mathrm{x}=8 \mathrm{y} \\
& \Rightarrow \quad 3 \mathrm{x}=2 \mathrm{y}
\end{aligned}
$$

If the points $\mathrm{A}(\mathrm{k}+1,2 \mathrm{k}), \mathrm{B}(3 \mathrm{k}, 2 \mathrm{k}+3)$ and $\mathrm{C}(5 \mathrm{k}-1,5 \mathrm{k})$ are collinear, then find the value of k.

Points A, B and C are collinear
Therefore $\frac{1}{2}[(\mathrm{k}+1)(2 \mathrm{k}+3-5 \mathrm{k})+3 \mathrm{k}(5 \mathrm{k}-2 \mathrm{k})+(5 \mathrm{k}-1)(2 \mathrm{k}-2 \mathrm{k}-3)]=0$

$$
\begin{aligned}
& =(k+1)(3-3 k)+9 k^{2}-3(5 k-1)=0 \\
& =2 k^{2}-5 k+2=0 \\
& =(k-2)(2 k-1)=0 \\
\Rightarrow & k=2, \frac{1}{2}
\end{aligned}
$$

In what ratio does the point $\left(\frac{24}{11}, y\right)$ divide the line segment joining the points $P(2,-2)$ and $Q(3,7)$? Also find the value of y.

$$
\begin{aligned}
& 15 . \\
& \underset{\sim}{\mathrm{P}(2,-2)} \underset{\mathrm{A}^{\left(\frac{24}{11}, y\right)}}{\mathrm{k}} \quad \underset{\mathrm{Q}(3,7)}{ }
\end{aligned}
$$

Let $P A: A Q=k: 1$

$$
\therefore \quad \frac{2+3 k}{k+1}=\frac{24}{11}
$$

$$
\Rightarrow \quad \mathrm{k}=\frac{2}{9}
$$

Hence the ratio is $2: 9$.

$$
\text { Therefore } y=\frac{-18+14}{11}=\frac{-4}{11}
$$

2016

Let P and Q be the points of trisection of the line segment joining the points $A(2,-2)$ and $B(-7,4)$ such that P is nearer to A. Find the coordinates of P and Q.

If the point $\mathrm{P}(x, y)$ is equidistant from the points $\mathrm{A}(\mathrm{a}+\mathrm{b}, \mathrm{b}-\mathrm{a})$ and $\mathrm{B}(\mathrm{a}-\mathrm{b}, \mathrm{a}+\mathrm{b})$. Prove that $\mathrm{b} x=\mathrm{a} y$.

$$
\begin{aligned}
& P A=P B \text { or }(P A)^{2}=(P B)^{2} \\
& \begin{aligned}
(a+b-x)^{2}+(b-a-y)^{2}=(a-b-x)^{2}+(a+b-y)^{2} \\
(a+b)^{2}+x^{2}-2 a x-2 b x+(b-a)^{2}+y^{2}-2 b y+2 a y
\end{aligned} \\
& \quad=(a-b)^{2}+x^{2}-2 a x+2 b x+(a+b)^{2}+y^{2}-2 a y-2 b y
\end{aligned}
$$

$$
\Rightarrow \quad 4 a y=4 b x \text { or } b x=a y
$$

2015

Find the relation between x and y if the points $\mathrm{A}(\mathrm{x}, \mathrm{y}), \mathrm{B}(-5,7)$ and $\mathrm{C}(-4,5)$ are collinear.

Using ar $(\triangle \mathrm{ABC})=0$

$$
\begin{gathered}
\Rightarrow x(7-5)-5(5-y)-4(y-7)=0 \\
2 x-25+5 y-4 y+28=0 \\
2 x+y+3=0
\end{gathered}
$$

If the coordinates of points A and B are $(-2,-2)$ and $(2,-4)$ respectively, find the coordinates of P such that $\mathrm{AP}=\frac{3}{7} \mathrm{AB}$, where P lies on the line segment AB .
$\mathrm{AP}=\frac{3}{7} \mathrm{AB} \Rightarrow \mathrm{AP}: \mathrm{PB}=3: 4$

$$
\begin{array}{llll}
\mathrm{A} & \mathrm{P}(\mathrm{x}, \mathrm{y}) & \mathrm{B} & \therefore \\
\hline(-2,-2) & 3: 4 & (2,-4) & \therefore \frac{6-8}{7}=-2 / 7 \\
& y=\frac{-12-8}{7}=-\frac{20}{7} \\
& P\left(-\frac{2}{7},-\frac{20}{7}\right)
\end{array}
$$

Find the values of k so that the area of the triangle with vertices $(1,-1)$, $(-4,2 k)$ and ($-k,-5$) is 24 sq. units.

$$
\begin{aligned}
& \frac{1}{2}[1(2 \mathrm{k}+5)-4(-5+1)-\mathrm{k}(-1-2 \mathrm{k})]=24 \\
& \Rightarrow \quad 2 \mathrm{k}^{2}+3 \mathrm{k}-27=0
\end{aligned}
$$

Solving to get $\mathrm{k}=3, \mathrm{k}=-\frac{9}{2}$

Some More Questions

The x-coordinate of a point P is twice its y-coordinate. If P is equidistant from $Q(2,-5)$ and $\mathrm{P}(-3,6)$, find the coordinates of P .
Solution:
Let the required point be $(2 y, y)$. Let $\mathrm{Q}(2,-5)$ and $\mathrm{R}(-3,6)$ are given points.
Now, $\mathrm{PQ}=\mathrm{PR} \Rightarrow \sqrt{(2 y-2)^{2}+(y+5)^{2}}=\sqrt{(2 y+3)^{2}+(y-6)^{2}}$
$\left[\because\right.$ using Distance formula, $\left.\sqrt{(x-2)^{2}+(y+5)^{2}}=\sqrt{(x+3)^{2}+(y-6)^{2}}\right]$
Squaring both sides we get

$$
\begin{aligned}
& 4 y^{2}+4-8 y+y^{2}+10 y+25=4 y^{2} & +9+12 y+y^{2}-12 y+36 \\
\Rightarrow & 2 y+29 & =45 \\
\Rightarrow & 2 y & =45-29=16 \\
\Rightarrow & y & =8 \\
\Rightarrow & 2 y & =16
\end{aligned}
$$

Hence coordinates of P are $(16,8)$

In figure ABC is a triangle coordinates of whose vertex A are $(0,-1)$. D and E respectively are the mid-points of the sides $A B$ and $A C$ and their coordinates are $(1,0)$ and $(0,1)$ respectively. If F is the mid-point of $B C$, find the areas of $\triangle A B C$ and $\triangle D E F$

Solution:

. Let coordinates of B are (x, y). Then using mid point formula we

$$
\begin{aligned}
& \frac{x+0}{2}=1 \quad \Rightarrow x=2 \\
& \frac{y-1}{2}=0 \quad \Rightarrow y=1
\end{aligned}
$$

Coordinates of B are $(2,1)$
Let coordinates of C are (p, q)
Similarly coordinates of C we have

$$
\begin{aligned}
\frac{p+0}{2}=0 & \Rightarrow p=0 \\
\frac{q-1}{2}=1 \quad & \Rightarrow q=3
\end{aligned}
$$

Coordinates of C are $(0,3)$

$$
\begin{aligned}
& \text { Area of } \triangle \mathrm{ABC} \\
& \begin{aligned}
\Rightarrow \frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] & =\frac{1}{2}[0(1-3)+2(3+1)+0(-1-1)] \\
& =\frac{1}{2} \times 8=4 \text { sq. units }
\end{aligned}
\end{aligned}
$$

Coordinates of F are $\left(\frac{2+0}{2}, \frac{1+3}{2}\right)$ i.e. $(1,2) \quad[\because$ Using mid-point formula]

$$
\text { Area of } \begin{aligned}
\triangle \mathrm{DEF} & =\frac{1}{2}[1(1-2)+0(2-0)+1(0-1)]=\frac{1}{2}[-1+0-1] \\
& =\frac{1}{2} \times(-2)=[-1]=1 \text { sq. units }[\because \text { Area cannot be negative }]
\end{aligned}
$$

The base BC of an equilateral triangle ABC lies on y -axis. The coordinates of point C are $(0,-3)$. The origin is the mid-point of the base. Find the coordinates of the points A and B Also find the coordinates of another point D such that BACD is a rhombus.

Solution:

Given that, $\because O$ is mid point of $B C$ and coordinates of C are $(0,-3)$
\therefore coordinate of B are $(0,3)$
Now AO will be the perpendicular bisector of BC. Therefore A will lie on x-axis. let coordinates of A are $(x, 0)$
Now, in equilateral $\triangle A B C, A B=B C$
Using distance formula,

$$
\begin{aligned}
\Rightarrow \quad \sqrt{(x-0)^{2}+(0-3)^{2}} & =6 \\
\sqrt{x^{2}+9} & =6 \\
x^{2}+9 & =36 \Rightarrow x^{2}=27 \\
x & = \pm 3 \sqrt{3}
\end{aligned}
$$

\therefore coordinates of A are $(3 \sqrt{3}, 0)$ or $(-3 \sqrt{3}, 0)$
When A is $(3 \sqrt{3}, 0)$ then D will be $(-3 \sqrt{3}, 0)$ so that BACD is a rhombus, since opposite sides are equal.

Points $A(-1, y)$ and $B(5,7)$ lie on a circle with centre $0(2,-3 y)$. Find the values ofy. Hence, find the radius of the circle

Solution:

Given, O is the centre of the circle and the points A and B lie on the circle.

$$
\begin{array}{rlrl}
& \text { So, } & \mathrm{OA} & =\mathrm{OB}(=r) \\
\Rightarrow & \mathrm{OA}^{2} & =\mathrm{OB}^{2}
\end{array}
$$

Using distance formula,
$\begin{aligned} \Rightarrow & (2+1)^{2}+(-3 y-y)^{2} & =(2-5)^{2}+(-3 y-7)^{2} \\ \Rightarrow & 9+16 y^{2} & =9+9 y^{2}+42 y+49 \\ \Rightarrow & 7 y^{2}-42 y-49 & =0 \\ \Rightarrow & y^{2}-6 y-7 & =0 \\ \Rightarrow & (y-7)(y+1) & =0 \\ \Rightarrow & y & =-1 \text { or } 7\end{aligned}$

When $y=-1$, then co-ordinates are: $O(2,3)$ and $A(-1,-1)$
Radius of circle, $r=\mathrm{OA}=\sqrt{(2+1)^{2}+(3+1)^{2}}=\sqrt{9+16}=5$ units
When $y=7$, then coordinates are: $\mathrm{O}(2,-21)$ and $\mathrm{A}(-1,7)$
Radius of circle, $r=\mathrm{OA}=\sqrt{(2+1)^{2}+(-21-7)^{2}}=\sqrt{9+784}=\sqrt{793}$ units.

If the point $A(x, y)$ is equidistant from two points $P(6 ;-1)$ and $Q(2,3)$, prove that $y=x-$ 3.

Solution:
Point $A(x, y)$ is equidistant from $P(6,-1)$ and $Q(2,3)$. Using distance formula, $P A=A Q$
$\Rightarrow \quad \sqrt{(6-x)^{2}+(-1-y)^{2}}=\sqrt{(2-x)^{2}+(3-y)^{2}}$
Squaring both sides, we get

$$
\begin{array}{rlrl}
& & (6-x)^{2}+(-1-y)^{2} & =(2-x)^{2}+(3-y)^{2} \\
\Rightarrow & & 36+x^{2}-12 x+1+y^{2}+2 y & =4+x^{2}-4 x+9+y^{2}-6 y \\
\Rightarrow & & -12 x+2 y+37 & =-4 x-6 y+13 \\
\Rightarrow & & 2 y+6 y & =13-4 x+12 x-37 \\
\Rightarrow & & 8 y & =8 x-24 \\
\Rightarrow & y & =x-3
\end{array}
$$

Hence, proved.
Point P divides the line segment joining the points $A(2,1)$ and $B(5,-8)$ such that $A P$ $/ A B=1 / 3$. If P lies on the Ine $2 x-y+k=0$, find the value of k.

Solution:

P is the point of intersection of line segment AB and line $2 x-y+k=0$.
Here, given that,

$$
\frac{\mathrm{AP}}{\mathrm{AB}}=\frac{1}{3} \Rightarrow 3 \mathrm{AP}=\mathrm{AB}
$$

$$
\Rightarrow \quad 3 \mathrm{AP}=\mathrm{AP}+\mathrm{PB}
$$

$$
\Rightarrow \quad 2 A P=P B
$$

$$
\Rightarrow \quad \frac{\mathrm{AP}}{\mathrm{~PB}}=\frac{1}{2} \Rightarrow \mathrm{AP}: \mathrm{PB}=1: 2
$$

$\Rightarrow \mathrm{P}$ divides the line segment joining $\mathrm{A}(2,1)$ and $\mathrm{B}(5,-8)$ in the ratio 1:2.
\therefore Coordinates of point P are

$$
\begin{aligned}
& x=\frac{1 \times 5+2 \times 2}{1+2}=3 \quad[\because \text { Using section formula }] \\
& y=\frac{1 \times(-8)+2 \times 1}{1+2}=-2
\end{aligned}
$$

i.e. $P(3,-2)$

As point P lies on the line $2 x-y+k=0, \mathrm{P}$ must satisfy it.

$$
\Rightarrow \quad 6+2+k=0 \quad \Rightarrow k=-8
$$

If the points $(p, q) ;(m, n)$ and $(p-m, q-n)$ are collinear, show that $p n=q m$

Solution:

If $\mathrm{P}(p, q), \mathrm{Q}(m, n), \mathrm{R}(p-m, q-n)$ are collinear then area of triangle formed by them is zero.
Hence,

$$
\text { ar } \triangle P Q R=0
$$

$$
\left[\because \text { Area of triangle }=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]\right]
$$

$$
\begin{array}{rlrl}
& & \frac{1}{2}|p n-q m+m q-m n-p n+m n+p q-m q-q p+p n| & =0 \\
\Rightarrow & & |p n-q m| & =0 \\
\Rightarrow & p n-q m & =0 \\
\Rightarrow & p n & =q m
\end{array}
$$

Hence, proved.

