Fractions

Learning objectives

3.1 Fraction
3.3 Fraction of shaded and unshaded parts
3.5 Comparison of fractions

3.2 Fraction of a collection

3.4 Types of fractions
3.6 Addition and subtraction of like fractions

3.1 FRACTION

When a thing is divided into equal parts, then each part is called a fraction of the whole.
A fraction is written in the form as $\frac{\text { Numerator }}{\text { Denominator }}$.
Here, numerator represents equal parts being talked about and denominator is the total number of equal parts.

One-Half

When a whole is divided into two equal parts, then each part is called the one-half $\left(\frac{1}{2}\right)$ of the whole.

Whole

Break

One-Third

When a whole is divided into three equal parts, then each part is called the one-third $\left(\frac{1}{3}\right)$ of the whole.

One-Fourth

When a whole is divided into four equal parts, then each part is called one-fourth $\left(\frac{1}{4}\right)$ of the whole.

3.2 FRACTION OF A COLLECTION

Aman had a collection of 15 apples. He want to put these apples in three basket in such a way that there are equal number of apples in all the baskets.

Olympiad Bite

- To calculate the fractional part of any quantity we divide objects into groups equal to the denominator.
- $1 / 2$ of a collection \rightarrow Divide whole by 2 .
- $1 / 3$ of a collection \rightarrow Divide whole by 3 .
- $1 / 4$ of a collection \rightarrow Divide whole by 4 .

SELF TEST - 1

1. Find the shaded fraction of the given figure.

(C) $\frac{5}{12}$
(D) $\frac{7}{12}$
2. Denominator of the fraction $\frac{4}{11}$ is \qquad
(A) 4
(B) 6
(C) 11
(D) 5
(A) $\frac{2}{4}$
(B) $\frac{1}{4}$
3. One-sixth of a collection of 24 toys is \qquad
(A) 12
(B) 4
(C) 18
(D) 16
4. Find the value of the following.

$$
\frac{1}{3} \text { of } 36
$$

(A) 18
(B) 15
(C) 12
(D) 9
(A) $\frac{5}{8}$
(B) $\frac{1}{2}$

3.4 TYPES OF FRACTIONS

Unit Fraction

A fraction in which the numerator is 1 is called unit fraction.
For example: $\frac{1}{2}, \frac{1}{5}, \frac{1}{7}$

Proper Fraction

A fraction in which numerator is smaller than the denominator is called proper fraction.
For example : $\frac{3}{4}, \frac{5}{8}, \frac{7}{9}$

Improper Fraction

A fraction in which numerator is greater than the denominator is called improper fraction.
For example : $\frac{6}{5}, \frac{9}{7}, \frac{5}{3}$

Like Fractions

Fractions having same denominator but different numerators.
For example : $\frac{4}{7}$ and $\frac{6}{7}$ are like fractions.

Unlike Fractions

Fractions having different denominators. (It doesn't matter what the numerator is) For example : $\frac{5}{7}$ and $\frac{9}{4}$ are unlike fractions.

3.5 COMPARISON OF FRACTIONS

> When the numerators are same, then the number with smaller denominator is greater.
For example : $\frac{2}{4}>\frac{2}{6}>\frac{2}{7}>\frac{2}{8}$
> When the denominators are same, then the number with greater numerator is greater.
For example : $\frac{7}{3}>\frac{6}{3}>\frac{5}{3}>\frac{4}{3}$

3.6 ADDITION AND SUBTRACTION OF LIKE FRACTIONS

In addition/subtraction of like fractions only numerators are added/subtracted.
For example :

SELF TEST - 2

1. Which of the following is a unit fraction?
(A) <
(B) $>$
(C) $=$
(D) Can't be determined
(A) $\frac{4}{5}$
(B) $\frac{2}{3}$
(C) $\frac{3}{2}$
(D) $\frac{1}{5}$
2. Which of the following fractions is greatest?
(A) $\frac{3}{11}$
(B) $\frac{4}{11}$
3. Find the sum of $\frac{2}{5}$ and $\frac{6}{5}$.
(C) $\frac{8}{11}$
(D) $\frac{9}{11}$
(A) $\frac{4}{5}$
(B) $\frac{8}{5}$
(C) $\frac{3}{5}$
(D) $\frac{1}{5}$
4. Compare and fill in the box.

$$
\frac{4}{7}+\frac{2}{7} \square \frac{5}{7}-\frac{2}{7}
$$

5. Which of the following set of fractions is like fractions?
(A) $\frac{2}{3}, \frac{4}{5}, \frac{6}{7}, \frac{7}{8}$
(B) $\frac{4}{5}, \frac{3}{5}, \frac{2}{5}, \frac{1}{5}$
(C) $\frac{5}{6}, \frac{5}{7}, \frac{5}{8}, \frac{5}{9}$
(D) $\frac{1}{2}, \frac{3}{4}, \frac{4}{5}, \frac{5}{7}$

EXERCISE

1. What fraction of the given figure is shaded?

(A) $\frac{8}{16}$
(B) $\frac{6}{16}$
(C) $\frac{10}{16}$
(D) $\frac{5}{16}$
2. Which of the following shows the fraction of crossed fidget?

(A) $\frac{7}{3}$
(B) $\frac{5}{7}$
(C) $\frac{4}{7}$
(D) $\frac{3}{7}$
3. Which of the following options shows the correct descending order of fractions?
(A) $\frac{4}{7}, \frac{5}{7}, \frac{8}{7}, \frac{6}{7}$
(B) $\frac{3}{10}, \frac{4}{10}, \frac{5}{10}, \frac{7}{10}$
(C) $\frac{8}{9}, \frac{7}{9}, \frac{5}{9}, \frac{2}{9}$
(D) None of these
4. Which of the following is a proper fraction?
(A) $\frac{17}{9}$
(B) $\frac{3}{5}$
(C) $\frac{12}{7}$
(D) $\frac{11}{3}$
5. Subtract $\frac{4}{13}$ from $\frac{9}{13}$.
(A) $\frac{5}{13}$
(B) $\frac{3}{13}$
(C) $\frac{4}{13}$
(D) $\frac{8}{13}$
6. Fraction of the shaded parts of the given figure is \qquad .

(A) $\frac{1}{8}$
(B) $\frac{7}{8}$
(C) $\frac{5}{8}$
(D) $\frac{3}{8}$
7. A pizza was cut into 12 equal pieces. Aanya ate 5 pieces. What fraction of the pizza is left with her?
(A) $\frac{5}{12}$
(B) $\frac{7}{12}$
(C) $\frac{3}{12}$
(D) $\frac{12}{5}$
8. What fraction of the given crayons are green?

(A) $\frac{1}{7}$
(B) $\frac{2}{7}$
(C) $\frac{4}{7}$
(D) $\frac{3}{7}$
9. $\frac{3}{4}$ represent \qquad -
(A) A whole
(B) 3 parts of whole
(C) 4 parts of whole
(D) 7 parts of whole
10. Aanchal's birthday cake was cut into 10 equal pieces. She distribute them equally among her five friends. What fraction of the cake each friend get?
(A) $\frac{1}{10}$
(B) $\frac{5}{10}$
(C) $\frac{2}{10}$
(D) $\frac{8}{10}$
11. Rashmi bakes 37 biscuits. She gave 23 biscuits to poor children. What fraction of biscuits is left with her?
(A) $\frac{14}{37}$
(B) $\frac{23}{37}$
(C) $\frac{15}{37}$
(D) $\frac{37}{14}$
12. Shaded fraction of

(A) $\frac{5}{3}$
(B) $\frac{7}{3}$
(C) $\frac{4}{3}$
(D) $\frac{8}{3}$
13. There are 8 \{j\} $\}, 5$, 3 , in a zoo. What fraction of the total animals are monkey in the zoo?
(A) $\frac{3}{15}$
(B) $\frac{5}{16}$
(C) $\frac{3}{16}$
(D) $\frac{8}{15}$
14. What fraction of letters in the word GEOMETRY are vowel?
(A) $\frac{2}{8}$
(B) $\frac{3}{8}$
(C) $\frac{2}{7}$
(D) $\frac{4}{8}$
15. Fraction of the digit 7 in the given series is \qquad . 279815473257891054798
(A) $\frac{5}{21}$
(B) $\frac{3}{19}$
(C) $\frac{4}{17}$
(D) $\frac{4}{21}$
16. What fraction of the given figure is unshaded?

(A) $\frac{5}{10}$
(B) $\frac{4}{10}$
(C) $\frac{6}{10}$
(D) $\frac{7}{10}$
17. The flower shown contains 6 petals. How many more petals must be shaded so that $\frac{1}{2}$ of the flower is shaded?

(A) 1
(B) 2
(C) 3
(D) 4
18. There is no fraction whose denominator is
\qquad
(A) 0
(B) 1
(C) 2
(D) 5
19. Which of the following options shows the correct match of shaded fraction?
(A)

(B)

(C)

(D)

20. Which symbol will make the given number sentence true?

$$
\frac{2}{7}+\frac{4}{7}-\frac{1}{7} \square \frac{1}{7}+\frac{5}{7}-\frac{6}{7}
$$

(A) $>$
(B) $<$
(C) $=$
(D) Can't be determined
21. Sneha puts $\frac{1}{5}$ cup of sugar in a bowl. Then she adds $\frac{3}{5}$ cup of sugar more. How much sugar is in the bowl now?
(A) $\frac{3}{5}$ cup
(B) $\frac{4}{5} \operatorname{cup}$
(C) $\frac{2}{5} \operatorname{cup}$
(D) 1 cup

22．What fraction of the given butterflies are not shaded？

（A）$\frac{12}{25}$
（B）$\frac{13}{25}$
（C）$\frac{21}{26}$
（D）$\frac{5}{25}$

23．What fraction of English alphabets is consonant？
（A）$\frac{5}{26}$
（B）$\frac{5}{21}$
（C）$\frac{21}{26}$
（D）$\frac{5}{24}$

24．There are 60 trees in a garden．Kirti has watered $\frac{1}{3}$ of the trees．What fraction of trees unwatered？
（A）$\frac{40}{60}$
（B）$\frac{5}{60}$
（C）$\frac{21}{26}$
（D）$\frac{1}{60}$

25．What fraction of stars are outside the box？
水大次大
（A）$\frac{5}{13}$
（B）$\frac{5}{8}$
（C）$\frac{8}{13}$
（D）$\frac{8}{5}$

26．The fraction of unshaded region shown in the figure is represented by \qquad ．

（A）$\frac{12}{13}$
（B）$\frac{13}{25}$
（C）$\frac{13}{12}$
（D）$\frac{12}{25}$

27．Which of the following shapes shows $\frac{1}{3}$ part shaded？
（A）

（B）

（C）

（D）

28．Piyush bought 85 cans of paint and used 32 cans．What fraction of the paint of cans did he use？
（A）$\frac{32}{85}$
（B）$\frac{35}{85}$
（C）$\frac{53}{85}$
（D）$\frac{32}{53}$

29．What fraction of the given figure is shaded？

（A）$\frac{4}{8}$
（B）$\frac{4}{7}$
（C）$\frac{4}{6}$
（D）$\frac{3}{8}$

30．Vaibhav has fifty ₹ 10 coins and twenty five $₹ 5$ coins．What fraction of coins are ₹ 10 coins？
（A）$\frac{25}{75}$
（B）$\frac{25}{50}$
（C）$\frac{50}{75}$
（D）$\frac{50}{100}$

Achievers Section (HOTS)

31. Match the figures given in Column 1 with their shaded fractions given in Column 2.

Column 1

Column 2

(P)

(1) $\frac{1}{4}$
(Q)

(2) $\frac{2}{5}$
(R)

(3) $\frac{2}{4}$
(A) (P) \rightarrow (1); (Q) \rightarrow (3); (R) \rightarrow (2
(B) $(\mathrm{P}) \rightarrow(2) ;(\mathrm{Q}) \rightarrow(3) ;(\mathrm{R}) \rightarrow(1)$
(C) $(\mathrm{P}) \rightarrow(2) ;(\mathrm{Q}) \rightarrow(1) ;(\mathrm{R}) \rightarrow(3)$
(D) (P) \rightarrow (1); (Q) \rightarrow (2); (R) \rightarrow (3)
32. Fill in the blanks.
(P) The figure

represents \qquad shaded fraction.
(Q) In the figure

\qquad fraction of the bananas are encircled.
(R) \qquad fraction of letters in the word CREATIVE are vowels.
(P)
(A) $\frac{4}{8}$
(Q) (R)
(B) $\frac{5}{8}$
(C) $\frac{5}{8}$
$\frac{4}{8}$
(D) $\frac{4}{8}$
$\frac{5}{8}$

$$
\frac{4}{8}
$$

$\frac{4}{8}$
$\frac{3}{8}$
33. Which of the following statements is CORRECT about the given figure?

(A) Fraction of numbers having zero at units place is $\frac{5}{13}$.
(B) Fraction of numbers having nine at tens place is $\frac{4}{13}$.
(C) Fraction of three digit numbers is $\frac{2}{13}$.
(D) All of these
34. Arrange the shaded fractions of given figures in descending order.

(A) P, Q, R, S
(B) $\mathrm{S}, \mathrm{Q}, \mathrm{R}, \mathrm{P}$
(C) P, Q, S, R
(D) $\mathrm{S}, \mathrm{R}, \mathrm{P}, \mathrm{Q}$
35. If
 and

(A) $\frac{2}{9}$
(B) $\frac{4}{9}$
(C) $\frac{8}{9}$
(D) $\frac{1}{9}$

SOF IMO 2019 QUESTIONS

1. What fraction of the given butterflies is NOT red?

(A) $\frac{6}{11}$
(B) $\frac{5}{11}$
(C) $\frac{4}{11}$
(D) $\frac{2}{11}$
(Level-1)
2. Malika has 10 strawberry ice-creams and 15 chocolate ice-creams. What fraction of the total ice-creams is the chocolate ice-creams?

Strawberry

Chocolate
(A) $\frac{5}{25}$
(B) $\frac{15}{25}$
(C) $\frac{10}{15}$
(D) $\frac{10}{25}$
(Level-1)
3. Match the following figures with their correct shaded fraction and select the correct option.

Column A
Column B
P.

Q.

(b) $\frac{4}{6}$
R.

(c) $\frac{4}{8}$
(A) $\mathrm{P} \rightarrow$ (c), $\mathrm{Q} \rightarrow$ (b), $\mathrm{R} \rightarrow$ (a)
(B) $\mathrm{P} \rightarrow$ (b), $\mathrm{Q} \rightarrow$ (c), $\mathrm{R} \rightarrow$ (a)
(C) $\mathrm{P} \rightarrow$ (c), $\mathrm{Q} \rightarrow$ (a), $\mathrm{R} \rightarrow$ (b)
(D) $\mathrm{P} \rightarrow$ (b), $\mathrm{Q} \rightarrow$ (a), $\mathrm{R} \rightarrow$ (c)
(Level-1)
4. In which of the following options, fractions are arranged in ascending order?
(A) $\frac{2}{7}, \frac{9}{7}, \frac{5}{7}, \frac{3}{7}$
(B) $\frac{2}{7}, \frac{9}{7}, \frac{3}{7}, \frac{5}{7}$
(C) $\frac{2}{7}, \frac{3}{7}, \frac{5}{7}, \frac{9}{7}$
(D) $\frac{9}{7}, \frac{5}{7}, \frac{3}{7}, \frac{2}{7} \quad$ (Level-1)
5. Which of the following figures shows $\frac{2}{4}$ shaded part?
(A)

(B)

(C)

(D)

(Level-1)
6. There were 1010 pastries in a shop. Of these, 175 were butterscotch pastries, 240 were chocolate and the rest were pineapple. What fraction of pastries
were pineapple in the shop?
(A) $\frac{275}{1010}$
(B) $\frac{415}{1010}$
(C) $\frac{119}{1010}$
(D) $\frac{595}{1010}$
(Level-1)
7. What fraction of the letters of the word LIBRARY is vowel?
(A) $\frac{5}{7}$
(B) $\frac{7}{2}$
(C) $\frac{2}{7}$
(D) $\frac{7}{5}$
(Level-2)
8. Find the sum of shaded fractions of the given figures.

(A) $\frac{8}{4}$
(B) $\frac{5}{4}$
(C) $\frac{7}{4}$
(D) $\frac{6}{4}$
(Level-2)
9. Which of the following has $\frac{6}{8}$ of its contents
shaded?

(A) P
(B) Q
(C) R
(D) S
(Level-2)
10. Match the following and select the correct option.

Column-A

$\begin{array}{ll}\text { P. } \frac{7}{9}-\frac{6}{9} & \text { (a) } \frac{9}{13}\end{array}$
Q. $\frac{1}{4}+\frac{3}{4}+\frac{2}{4}$
(b) $\frac{1}{9}$
R. $\frac{3}{13}+\frac{7}{13}-\frac{1}{13}$
(c) $\frac{2}{14}$
S. $\frac{12}{14}-\frac{10}{14}$
(d) $\frac{6}{4}$
(A) P-(a); Q-(d); R-(c); S-(b)
(B) P-(b); Q-(d); R-(a); S-(c)
(C) P-(b); Q-(a); R-(d); S-(c)
(D) P-(c); Q-(d); R-(a); S-(b)

HINTS \& EXPLANATIONS

SELF TEST - 1

1. (B): Total number of equal parts $=4$

Number of shaded part = 1
So, shaded fraction $=\frac{1}{4}$
2. (C): Total number of faces $=12$

Number of smiling faces $=5$
\therefore Required fraction $=\frac{5}{12}$
3. (C): Fraction $=\frac{4}{11} \longrightarrow$ Numerator
4. (B): Total number of toys $=24$

So, one-sixth of 24 toys $=24 \div 6=4$
5. (C): $\frac{1}{3}$ of $36=36 \div 3=12$

SELF TEST - 2

1. (D)
2. (B): Required sum $=\frac{2}{5}+\frac{6}{5}=\frac{2+6}{5}=\frac{8}{5}$
3. (B) $: \frac{4}{7}+\frac{2}{7}=\frac{4+2}{7}=\frac{6}{7}$
$\frac{5}{7}-\frac{2}{7}=\frac{5-2}{7}=\frac{3}{7}$
And $\frac{6}{7} \square \frac{3}{7}$
4. (D): $\frac{9}{11}>\frac{8}{11}>\frac{4}{11}>\frac{3}{11}$.
5. (B)

EXERCISE

1. (B): Total number of equal parts $=16$

Number of shaded parts $=6$
So, required shaded fraction $=\frac{6}{16}$
2. (D): Total number of fidgets $=7$

Number of crossed fidgets $=3$
So, required fraction $=\frac{3}{7}$
3. (C): $\frac{8}{9}>\frac{7}{9}>\frac{5}{9}>\frac{2}{9}$
4. (B)
5. (A): Required difference $=\frac{9}{13}-\frac{4}{13}=\frac{9-4}{13}=\frac{5}{13}$
6. (C): Total number of equal parts $=8$

Number of shaded parts = 5
So, shaded fraction $=\frac{5}{8}$
7. (B): Total number of equal parts of pizza $=12$

Number of parts of pizza Aanya ate $=5$
Number of parts of pizza left $=12-5=7$
So, fraction of pizza left $=\frac{7}{12}$
8. (D): Total number of crayons $=7$

Number of green crayons $=3$
So, fraction of green crayons $=\frac{3}{7}$
9. (B)
10. (C): Total number of equal pieces of cake $=10$ Number of friends $=5$
So, each friend get $10 \div 5=2$ equal pieces
So, fraction of cake each friend get $=\frac{2}{10}$
11. (A): Total number of biscuits baked $=37$

Number of biscuits given to poor children $=23$
Number of biscuits left = 37-23=14
So, fraction of biscuits left $=\frac{14}{37}$
12. (C): Shaded fraction of
$=\frac{3}{3}+\frac{1}{3}=\frac{3+1}{3}=\frac{4}{3}$

13. (C): Total number of animals in the zoo
$=8+5+3=16$
Number of monkeys in the zoo $=3$
So, required fraction $=\frac{3}{16}$
14. (B): Total number of letters in the given word $=8$
Total number of vowels (E, O, E) $=3$
So, fraction of vowels in the given word $=\frac{3}{8}$
15. (D): Total number of digits in the given series $=21$
Number of digit 7 in the given series $=4$
So, required fraction $=\frac{4}{21}$
16. (B): Total number of equal parts $=10$

Number of unshaded parts $=4$
So, fraction of unshaded part $=\frac{4}{10}$
17. (A): Total number of petals $=6$

Total number of petals must be shaded to make shaded fraction $\frac{1}{2}=\frac{1}{2} \times 6=3$
Number of more petals must be shaded $=3-2=1$
18. (A)
19. (C):

	Number of equal parts	Number of shaded parts	Shaded fraction
(A)	8	2	$2 / 8$
(B)	8	3	$3 / 8$
(C)	8	4	$4 / 8$
(D)	8	5	$5 / 8$

20. (A): $\frac{2}{7}+\frac{4}{7}-\frac{1}{7}=\frac{2+4}{7}-\frac{1}{7}=\frac{6}{7}-\frac{1}{7}=\frac{6-1}{7}=\frac{5}{7}$ and $\frac{1}{7}+\frac{5}{7}-\frac{6}{7}=\frac{1+5}{7}-\frac{6}{7}=\frac{6}{7}-\frac{6}{7}=\frac{6-6}{7}=\frac{0}{7}=0$
So, $\frac{5}{7}>0$
21. (B): Quantity of sugar Sneha puts in bowl $=\frac{1}{5} \operatorname{cup}$
Quantity of sugar added $=\frac{3}{5}$ cup
Quantity of sugar in bowl now $=\left(\frac{1}{5}+\frac{3}{5}\right)$ cup
$=\frac{1+3}{5} \operatorname{cup}=\frac{4}{5} \operatorname{cup}$
22. (B): Total number of butterflies $=25$

Number of shaded butterflies $=12$
So, number of butterflies not shaded $=25-12=13$
So, fraction of butterflies not shaded $=\frac{13}{25}$
23. (C): Total number of alphabets $=26$

Total number of consonants $=21$
So, fraction of consonants $=\frac{21}{26}$
24. (A): Total number of trees in the garden $=60$

Number of trees Kirti watered $=\frac{1}{3}$ of 60
$=60 \div 3=20$
\therefore Number of trees unwatered $=60-20=40$
So, fraction of trees left unwatered $=\frac{40}{60}$
25. (A): Total number of stars $=13$

Number of stars outside the box $=5$
So, required fraction $=\frac{5}{13}$
26. (D): Total number of equal parts $=25$

Number of unshaded parts $=12$
So, fraction of unshaded region $=\frac{12}{25}$
27. (D): (A) Total number of equal parts $=4$ Number of shaded parts $=2$
\therefore Shaded fraction $=\frac{2}{4}$
(B) Total number of equal parts $=2$

Number of shaded part $=1$
\therefore Shaded fraction $=\frac{1}{2}$
(C) Total number of equal parts $=4$

Number of shaded parts $=3$
\therefore Shaded fraction $=\frac{3}{4}$
(D) Total number of equal parts $=3$

Number of shaded part $=1$
\therefore Shaded fraction $=\frac{1}{3}$
28. (A): Total number of cans bought $=85$

Number of cans used $=32$
So, fraction of cans used $=\frac{32}{85}$
29. (A): Total number of equal parts $=8$

Number of shaded parts $=4$
So, fraction of shaded part $=\frac{4}{8}$
30. (C): Total number of coins $=50+25=75$

Number of ₹ 10 coins $=50$
So, fraction of $₹ 10$ coins $=\frac{50}{75}$
31. (B): (P) Total number of equal parts $=5$

Number of shaded parts $=2$
So, shaded fraction $=\frac{2}{5}$
(Q) Total number of equal parts $=4$

Number of shaded parts $=2$
So, shaded fraction $=\frac{2}{4}$
(R) Total number of equal parts $=4$

Number of shaded part = 1
So, shaded fraction $=\frac{1}{4}$
32. (B): (P) Total number of equal parts $=8$

Number of shaded parts $=5$
So, shaded fraction $=\frac{5}{8}$
(Q) Total number of bananas $=8$

Number of encircled bananas $=4$
So, fraction of encircled bananas $=\frac{4}{8}$
(R) Total number of letters $=8$

Number of vowels (E, A, I, E) $=4$
So, fraction of vowels $=\frac{4}{8}$
33. (D): Total numbers $=13$
(A) Numbers having zero at units place
$(50,40,30,90,700)=5$
So, required fraction $=\frac{5}{13}$
(B) Numbers having 9 at tens place $(92,98,90,95)=4$

So, required fraction $=\frac{4}{13}$
(C) Three digit numbers $(700,512)=2$

So, required fraction $=\frac{2}{13}$
34. (B) :

Figure	Shaded fraction
P	$2 / 8$
Q	$4 / 8$
R	$3 / 8$
S	$5 / 8$

Correct descending order is $\mathrm{S}, \mathrm{Q}, \mathrm{R}, \mathrm{P}$.

$$
\Rightarrow \quad(6+3)=1 \Rightarrow 9 \text { है }=1 \Rightarrow 1=\frac{1}{9}
$$

$$
\Rightarrow \text { है \% है }=\text { है है है है }=\frac{4}{9}
$$

SOF IMO 2019 QUESTIONS

1. (A): Total number of butterflies $=11$

Number of butterflies which are not red $=6$
So, required fraction $=\frac{6}{11}$
2. (B): Total number of ice-creams $=10+15=25$ Number of chocolate ice-creams $=15$
So, required fraction $=\frac{15}{25}$
3. $(\mathrm{C}):(\mathrm{P})$ Total number of flowers $=8$

Number of shaded flowers $=4$
\therefore Shaded fraction $=\frac{4}{8}$
(Q) Total number of equal parts $=10$

Number of shaded parts $=4$
\therefore Shaded fraction $=\frac{4}{10}$
(R) Total number of equal parts $=6$

Number of shaded parts $=4$
\therefore Shaded fraction $=\frac{4}{6}$
4. (C): $\frac{2}{7}<\frac{3}{7}<\frac{5}{7}<\frac{9}{7}$
5. (B): (A) Total number of equal parts $=4$

Number of shaded parts $=1$
So, shaded fraction $=\frac{1}{4}$
(B) Total number of equal parts $=4$

Number of shaded parts $=2$
So, shaded fraction $=\frac{2}{4}$
(C) Total number of equal parts $=4$

Number of shaded parts $=1$
So, shaded fraction $=\frac{1}{4}$
(D) Total number of equal parts $=4$

Number of shaded parts $=3$
So, shaded fraction $=\frac{3}{4}$
6. (D): Total number of pastries $=1010$

Total number of butterscotch and chocolate pastries $=175+240=415$
\therefore Number of pineapple pastries $=1010-415=595$
So, fraction of pineapple pastries $=\frac{595}{1010}$
7. (C): Total number of letters $=7$

Number of vowels (I, A) $=2$
So, fraction of vowels $=\frac{2}{7}$
8. (D): Shaded fraction of first figure $=\frac{1}{4}$

Shaded fraction of second figure $=\frac{2}{4}$
Shaded fraction of third figure $=\frac{3}{4}$
\therefore Required sum $=\frac{1}{4}+\frac{2}{4}+\frac{3}{4}$
$=\frac{1+2+3}{4}=\frac{6}{4}$
9. (B): P . Total number of figures $=8$

Number of shaded figures $=2$
So, shaded fraction $=\frac{2}{8}$
Q. Total number of figures $=8$

Number of shaded figures $=6$

So, shaded fraction $=\frac{6}{8}$
R. Total number of figures $=8$

Number of shaded figures $=5$
So, shaded fraction $=\frac{5}{8}$
S. Total number of figures $=12$

Number of shaded figures $=6$
So, shaded fraction $=\frac{6}{12}$
10. (B): (P) $\frac{7}{9}-\frac{6}{9}=\frac{7-6}{9}=\frac{1}{9}$
(Q) $\frac{1}{4}+\frac{3}{4}+\frac{2}{4}=\frac{1+3+2}{4}=\frac{6}{4}$
(R) $\frac{3}{13}+\frac{7}{13}-\frac{1}{13}=\frac{3+7}{13}-\frac{1}{13}=\frac{10}{13}-\frac{1}{13}$
$=\frac{10-1}{13}=\frac{9}{13}$
(S) $\frac{12}{14}-\frac{10}{14}=\frac{12-10}{14}=\frac{2}{14}$

