Mock JEE Main - 7 | JEE

Maximum Marks: 300

Timing: 04:00 PM to 04:00 AM

General Instructions

1. The test is of $\mathbf{3}$ hours duration and the maximum marks is $\mathbf{3 0 0}$.
2. The question paper consists of $\mathbf{3}$ Parts (Part I: Physics, Part II: Chemistry, Part III: Mathematics). Each Part has two sections (Section $1 \&$ Section 2).
3. Section $\mathbf{1}$ contains $\mathbf{2 0}$ Multiple Choice Questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.
4. Section 2 contains 10 Numerical Value Type Questions Out of which ONLY 5 (any) questions have to be attempted.
You will NOT be allowed to attempt the sixth question. If you wish to attempt any other question apart from the five already attempted, then you will have to delete any one response from the five previously answered and then proceed to answer the new one.

The answer to each question should be rounded off to the nearest integer.
5. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc. inside the examination room/hall.
6. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator on duty in the Room/Hall. However, the candidates are allowed to take away this Test Booklet with them.

Marking Scheme

1. Section - 1: +4 for correct answer, -1 (negative marking) for incorrect answer, 0 for all other cases.
2. Section - 2: +4 for correct answer, 0 for all other cases. There is no negative marking.
[^0]
PART I: PHYSICS

SECTION-1

This section contains $\mathbf{2 0}$ Multiple Choice Questions. Each question has $\mathbf{4}$ choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.

1. The diagram shows three concentric conducting spherical shells having radii $R, 2 R$ and $3 R$. All three shells are given some charges. The initial potential of each shell is as mentioned in the figure. If the inner most shell is earthed then the final charge present on its outer surface would be equal to:

(A) Zero
(B) $\quad 40 \pi \varepsilon_{0} R$
(C) $4 \pi \varepsilon_{0} R$
(D) $-\pi \varepsilon_{0} R$
2. An electromagnetic wave travels in vacuum with electric field as:
$\vec{E}=E_{1} \hat{i} \cos (k z-\omega t)+E_{2} \hat{j} \cos (k z+\omega t)$.
The associated magnetic field is given as:
(A) $\vec{B}=\frac{1}{c}\left(E_{1} \hat{i}-E_{2} \hat{j}\right) \cos (k z-\omega t)$
(B) $\vec{B}=\frac{1}{c}\left(E_{1} \hat{i}+E_{2} \hat{j}\right) \cos (k z+\omega t)$
(C) $\vec{B}=\frac{E_{1}}{c} \hat{j} \cos (k z-\omega t)+\frac{E_{2}}{c} \hat{i} \cos (k z+\omega t)$
(D) $\vec{B}=\frac{E_{1}}{c} \hat{i} \cos (k z-\omega t)+\frac{E_{2}}{c} \hat{j} \cos (k z+\omega t)$
3. A block ' A ' of mass m attached to a massless spring is performing oscillatory motion of amplitude ' A ' on a frictionless horizontal plane. If it collides elastically with another block ' B ' of mass 2 m kept initially at rest, when ' A ' is passing through its equilibrium point, the amplitude of oscillation for the block ' A ' become $f \mathrm{~A}$. The value of f is:
(A) $\frac{1}{\sqrt{2}}$
(B) $\frac{1}{2}$
(C) 1
(D) $\frac{1}{3}$
4. A wave propagates on a string in the positive x -axis with a velocity v. The shape of string at $t=t_{0}$ is given as $y\left(x, t_{0}\right)=A \sin \left(\frac{x}{b}\right)$. The wave equation for a general time t is:
(A) $y(x, t)=A \sin \left[\frac{x-v\left(t-t_{0}\right)}{b}\right]$
(B) $\quad y(x, t)=A \sin \left[\frac{x-v t}{b}\right]$
(C) $y(x, t)=A \sin \left[\frac{(x+v t)}{b}\right]$
(D) $\quad y(x, t)=A \sin \left[\frac{x+v\left(t-t_{0}\right)}{b}\right]$
5. A copper ring of radius $\mathrm{R}=8 \mathrm{~cm}$ and circular cross-sectional $A=2 \mathrm{~mm}^{2}$ is in a homogeneous magnetic field whose induction is perpendicular to its plane and changes uniformly. At $t=0$ the induction is $B_{0}=0$ and in $\mathrm{t}=0.2 s$ it increases to $\mathrm{B}=2 \mathrm{~T}$. The angular velocity ω at which the ring should be rotated uniformly in order not to have tensile stress in it at time instant $t_{1}=0.1 \mathrm{~s}$ is approximately: (mass of the ring $\mathrm{m}=9$ gram, Resistance $=5 \mathrm{~m} \Omega$, self-induction and gravity can be neglected)
(A) $1.2 \times 10^{3} \mathrm{rad} / \mathrm{sec}$
(B) $2.4 \times 10^{3} \mathrm{rad} / \mathrm{sec}$
(C) $4.8 \times 10^{2} \mathrm{rad} / \mathrm{sec}$
(D) $1.7 \times 10^{2} \mathrm{rad} / \mathrm{sec}$
6. The mass density of a planet of radius R varies with the distance r from its centre as $\rho(r)=\rho_{0}\left(1-\frac{r^{3}}{R^{3}}\right)$. Then the gravitational field is maximum at:
(A) $r=\frac{1}{\sqrt{2}} R$
(B) $\quad r=\sqrt{\frac{3}{4}} R$
(C) $\quad r=\frac{R}{4^{1 / 3}}$
(D) $\quad r=\frac{R}{2^{1 / 3}}$
7. A uniform rod of length b capable of turning about its end which is out of water, rests inclined to the vertical. If the specific gravity of the rod is $\frac{5}{9}$, find the length of the rod immersed in water.

(A) $\frac{b}{2}$
(B) $\frac{b}{4}$
(C) $\frac{b}{6}$
(D) $\frac{b}{3}$
8. The binding energy (in MeV) of a nitrogen nucleus $\left({ }_{7}^{14} N\right)$ is :
(Given mass of nucleus $m\left({ }_{7}^{14} N\right)=14.00307 u$, mass of proton $m_{p}=1.00783 u$, mass of neutron $m_{n}=1.00867 u$ and $1 u=931.5 \mathrm{MeV} / c^{2}$)
(A) $\quad 204.2 \mathrm{MeV}$
(B) $\quad 104.7 \mathrm{MeV}$
(C) $\quad 124.2 \mathrm{Mev}$
(D) $\quad 110.7 \mathrm{Mev}$
9. Suppose a pure Si crystal has 5×10^{28} atoms $/ \mathrm{m}^{3}$. It is doped by 1 ppm concentration of pentavalent As. The number of holes $\left(n_{i}=1.5 \times 10^{16} / \mathrm{m}^{3}\right)$ is:
(A) $4.5 \times 10^{9} / \mathrm{m}^{3}$
(B) $7 \times 10^{9} / \mathrm{m}^{3}$
(C) $1.5 \times 10^{12} / \mathrm{m}^{3}$
(D) $4 \times 10^{8} / \mathrm{m}^{3}$
10. Light of wavelength λ in air enters a medium of refractive index μ. Two points in this medium, lying along the path of this light are at a distance x apart. The phase difference between these points is:
(A) $\frac{2 \pi}{\lambda} \mu x$
(B) $\frac{2 \pi x}{\mu \lambda}$
(C) $\quad(\lambda-1) \frac{2 \pi}{\lambda} x$
(D) $\frac{2 \pi x}{\lambda(\mu-1)}$
11. In the circuit shown the readings of ammeter and voltmeter are 4 A and 20 V respectively. The meters are non-ideal, then R is:
(A) 5Ω
(B) less than 4Ω
(C) greater than 5Ω
(D) between 4Ω and 5Ω

12. Three samples of the same gas A, B and $C(\gamma=3 / 2)$ have initially equal volume. Now the volume of each sample is doubled. The process is adiabatic for A , isobaric for B and isothermal for C . If the final pressures are equal for all three samples, the ratio of their initial pressures are:
(A) $\quad 2 \sqrt{2}: 2: 1$
(B) $2 \sqrt{2}: 1: 2$
(C) $\sqrt{2}: 1: 2$
(D) $2: 1: \sqrt{2}$
13. In testing a diode by a multimeter which option shows correct readings for a non-defective diode? Multimeter resistance measurement position is set in the range $10 \mathrm{k} \Omega$. .
(A)

(B)

(C)

(D)

14. Steam at $100^{\circ} \mathrm{C}$ is passed into a calorimeter of water equivalent 10 gm containing 74 gm of water and 10 gm of ice at $0^{\circ} \mathrm{C}$. If the temperature of the calorimeter and its contents rises to $5^{\circ} \mathrm{C}$, the amount of steam passed (Latent heat of vapourisation $=540 \mathrm{cal} / \mathrm{g}$, latent heat of fusion $=80 \mathrm{cal} / \mathrm{g}$) is:
(A) 3 gm
(B) 4 gm
(C) 2 gm
(D) 5 gm
15. A smooth spherical ball strikes a smooth horizontal floor at an angle $\theta=45^{\circ}$. The coefficient of restitution between the ball and the floor is $e=\frac{1}{2}$. The fraction of its kinetic energy lost in collision is: (there is no rotational kinetic energy before or after collision)
(A) $\frac{5}{8}$
(B) $\frac{3}{8}$
(C) $\frac{3}{4}$
(D) $\frac{1}{4}$
16. Amount of radiation energy emitted by unit surface area per unit time by a body is defined as its emissive power. Dimension of Emissive power is:
(A) $\left[M^{2} L^{0} T^{-1}\right]$
(B) $\left[M L T^{-2}\right]$
(C) $\left[M L^{2} T^{-2}\right]$
(D) $\quad\left[M L^{0} T^{-3}\right]$
17. The absolute temperature of air in a region linearly increases from T_{1} to T_{2} in a space of width d. The time taken by the sound wave to travel in this region is (The velocity of sound at 273 K is v):
(A) $\frac{2 d}{v} \frac{\sqrt{273}}{\sqrt{T_{1}+T_{2}}}$
(B) $\frac{2 d}{v} \frac{\sqrt{T_{1}}+\sqrt{T_{2}}}{\sqrt{273}}$
(C) $\frac{2 d}{v} \frac{\sqrt{273}}{\sqrt{T_{1}}+\sqrt{T_{2}}}$
(D) $\frac{2 d}{v} \frac{T_{1}+T_{2}}{273}$

18. A proton and an α-particle both initially at rest are accelerated in a region of electric potential difference V and gravity free space. The proton is projected with gained kinetic energy against a uniform constant electric field and comes to momentary rest after travelling a distance S_{0}. If the α-particle is also projected with gained kinetic energy against same electric field, it will come to momentary rest after travelling through:
(A) $\quad S_{0}$
(B) $\quad \sqrt{5} S_{0}$
(C) $\frac{S_{0}}{2}$
(D) $\frac{S_{0}}{2 \sqrt{2}}$
19. A source of light emits monochromatic visible light of wavelength 500 nm . The source emits light of power 100 W . The number of photons emitted per sec of the visible light of the given wavelength is: $(h c=1240 \mathrm{eV} . \mathrm{nm})$
(A) 2.5×10^{19}
(B) 5.0×10^{19}
(C) 4.5×10^{20}
(D) 2.5×10^{20}
20. The torque $\vec{\tau}$ acts on a body about a given point is found to be equal to $\vec{A} \times \vec{L}$ where \vec{A} is a constant nonzero vector and \vec{L} is the angular momentum of the body about that point. Choose the incorrect option: $(\hat{A} \neq \pm \hat{L})$
(A) $\quad \frac{\overrightarrow{d L}}{d t}$ is perpendicular to \vec{L} at all instants of time
(B) The component of \vec{L} in the direction of \vec{A} does not change with time
(C) The magnitude of \vec{L} does not change with time
(D) $\quad \vec{L}$ does not change with time

SECTION-2

Section 2 contains 10 Numerical Value Type Questions Out of which ONLY 5 (any) questions have to be attempted.

 The answer to each question should be rounded off to the nearest integer..21. A double convex lens is made of glass which has its refractive index of 1.55 for violet rays and 1.50 for red rays. If the focal length for violet rays is 20 cm , then the focal length for red rays will be \qquad cm .
22. A 100 eV electron collides with a stationary helium ion $H e^{+}$in its ground state and excites it into higher energy level n. After collision He^{+}ions emits two photons in succession with a wavelength $1085 \AA$ and $304 \AA$ to reach its ground state. Quantum number of excited state n is \qquad -.
23. Block of mass M slides down on frictionless incline as shown. The minimum friction coefficient so that block of mass m does not slide with respect to lower block is close to $\frac{I}{1000}$, the nearest integer to I is
$\ldots \cdot\left(\sin 37^{\circ} \approx \frac{3}{5}\right)\left\{\right.$ Take $\left.g=10 \mathrm{~m} / \mathrm{s}^{2}\right\}$

24. Three points masses $m, 2 m$ and $3 m$ are located at the vertices of an equilateral triangle of side ' a '. The moment of inertia of the system about an axis along the altitude of the triangle passing through m is $\frac{N}{20} m a^{2}$ where N is an integer. The value of N is \qquad -.
25. A circular loop of radius $\mathrm{R}=20 \mathrm{~cm}$ is placed in a uniform magnetic field $B=7 T$ in $\mathrm{x}-\mathrm{y}$ plane as shown in figure. The loop carries a current $i=1.0 \mathrm{~A}$ in the direction shown in figure. The magnitude of torque acting on the loop is \qquad N.m. $\left\{\right.$ Take $\left.\pi=\frac{22}{7}\right\}$

26. A 1 kg particle is moving unidirectionally on a horizontal plane under the action of power $P=-2 v^{3}$, of power supplying energy source. The velocity (v) - time (t) graph that describes the motion of the particle is shown in figure. (Graphs are drawn schematically and are not to scale) The value of t_{0} in graph is x sec. Find $8 x$

27. A hot body is being cooled in air according to Newton's law of cooling, the rate of fall of temperature being k times the difference of its temperature with respect to that of surroundings. The time after which the rate of heat loss of the body will be half of the maximum rate of heat loss is $\frac{1}{2 k} \log _{e} n$ (The time is to be counted from the instant $t=0$). The value of n is \qquad .
28. A paramagnetic sample shows a net magnetisation of $12 \mathrm{~A} / \mathrm{m}$ when placed in an external magnetic field of 0.6 T at a temperature of 4 K . When the same sample is placed in an external magnetic field of 0.2 T at temperature of 16 K , the net magnetisation will be \qquad A/m.
29. Two carnot engines operate in series between a heat source at a temperature $T_{1}=900 \mathrm{~K}$ and heat sink at temperature $T_{3}=400 \mathrm{~K}$. There is another reservoir at temperature T_{2}, as shown, with $T_{1}>T_{2}>T_{3}$. The two engines are equally efficient if $T_{2}=$ \qquad K.

30. A point object moves towards a concave mirror with a speed $10 \mathrm{~cm} \mathrm{~s}^{-1}$ along the principal axis. The magnitude of the velocity of object with respect to image when the object is at distance of 15 cm from the pole is ___cm s${ }^{-1}$. (Focal length of the mirror kept at rest is 10 cm)

SECTION-1

This section contains 20 Multiple Choice Questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.

1. Among the following statements, identify the correct set of statements:
(A) Size of Li is smaller than Mg
(B) Both Li and Mg form covalent compounds readily
(C) Both Li and Mg react with nitrogen and form nitride
(D) Oxides of Li and Mg do not combine with excess oxygen to give superoxides
(A)
(A), (B), (C) and (D)
(B) $\quad(\mathrm{B}),(\mathrm{C})$ and (D)
(C)
(A), (B) and (C)
(D) (C) and (D)
2. Consider the following molecules and statements related to them:

(P)

(Q)
(a) $\quad(\mathrm{Q})$ is more volatile than (P)
(b) (Q) has higher boiling point than (P)
(c) $\quad(\mathrm{P})$ dissolves more readily than (Q) in water
(d) $\quad \mathrm{pk}_{\mathrm{a}}$ value of (P) is higher than (Q)

Identify the correct option from below:
(A)
(a) and (b) are true
(B) (a) and (c) are true
(C) only (a) is true
(D) (b) and (c) are true
3. The increasing order of the reactivity of the following compounds in nucleophilic addition reaction is:

(a)

(b)

(c)

(d)
(A)
(a) $<$ (b) $<$ (c) $<$ (d)
(B) \quad (d) $<$ (c) $<$ (b) $<$ (a)
(C)
(b) $<$ (a) $<$ (d) $<$ (c)
(D) \quad (b) $<$ (a) $<$ (c) $<$ (d)
4. $\quad 100 \mathrm{ml}$ of $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ is taken in a beaker and 100 mL of 0.1 M HCl is added into it and the pH is continuously measured. Which of the following graphs correctly depicts the change in pH ?
(A)

(B)

(C)

(D)

5. A container contains O_{2}, He and SO_{2} gases such that mass of SO_{2} is double the mass of O_{2} and mass of He is half the mass of O_{2} gas. The sum of mole fraction of all the gases is:
(A) 1
(B) 3
(C) 5
(D) 8
6. Maximum number of different photons emitted when only two H atoms are placed in a container and each is present in $3^{\text {rd }}$ excited state:
(A) 6
(B) 3
(C) 1
(D) 4
7. Consider the following reaction:

The product ' P ' gives positive acetyl chloride test. This is because of the presence of which of these -OH group(s)?
(A)
(b) only
(B)
(c) and (d)
(C) (d) only
(D) (b) and (d)
8. CMC is the particular concentration above which micelle formation takes place. CMC for soap lies between:
(A) 10^{5} to $10^{6} \mathrm{~mol} \mathrm{l}^{-1}$
(B) $\quad 10^{-4}$ to $10^{-3} \mathrm{~mol} \mathrm{l}^{-1}$
(C) $\quad 10^{4}$ to $10^{3} \mathrm{~mol} \mathrm{l}^{-1}$
(D) $\quad 10^{-5}$ to $10^{-6} \mathrm{moll}^{-1}$
9. The incorrect statement is:
(A) chromate and dichromate ions are diamagnetic
(B) Dichromate ion is a weaker base than chromate ion
(C) Chromate ion is yellow in colour and dichromate ion is orange in colour
(D) Chromate ion has a tetrahedral shape whereas dichromate ion has two tetrahedral units with two common oxygen bond
10. Which of the following statement is incorrect statement for photochemical smog?
(A) Photochemical smog leads to cracking of Rubber
(B) It causes corrosion of metals
(C) It is known as reducing smog
(D) It forms in warm, dry and sunny climate
11. The compound ' A ' in the following Reaction is:
$\mathrm{A} \xrightarrow[\text { (2) } \mathrm{Zn} / \mathrm{H}_{2} \mathrm{O}]{\text { (1) } \mathrm{O}_{3}} \mathrm{~B}+\mathrm{C}$

$\mathrm{C} \xrightarrow{\text { conc } \mathrm{KOH}}$ Benzyl alcohol + salt of Benzoic Acid
$\mathrm{D} \xrightarrow[\Delta]{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{E}$
(A) $\mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
(B)
(C)

(D)

12. Volume strength of original peroxide solution is 16.8 V . Determine the molarity and normality of peroxide solution respectively:
(A) 3 and 3
(B) 3 and 1.5
(C) 1.5 and 3
(D) 1.5 and 1.5
13. Arrange the following in increasing order of reactivity towards AgNO_{3} solution:

(I)

(II)

(III)

(IV)
(A) \quad (II) $<$ (III) $<$ (I) $<$ (IV)
(B) (I) $<$ (III) $<$ (IV) $<$ (II)
(C)
(III) $<$ (II) $<$ (IV) $<$ (I)
(D) (IV) $<$ (II) $<$ (III) $<$ (I)
14. For the reaction $A+2 B \rightarrow 3 C+D$, which of the following expression represents the rate of formation of C , in terms of rate of decomposition of A :
(A) $\frac{d[C]}{d t}=3 \frac{d[A]}{d t}$
(B) $\frac{d[C]}{d t}=\frac{d[A]}{d t}$
(C) $\frac{d[C]}{d t}=\frac{1}{3} \frac{d[A]}{d t}$
(D) $\frac{3 d[C]}{d t}=\frac{d[A]}{d t}$
15. The five successive ionization enthalpies of an element are $710,1414,2550,28124$ and $33845 \mathrm{~kJ} \mathrm{~mol}^{-1}$. How many moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ will be needed to react completely with 4 moles of the metal hydroxide?
(A) 3
(B) 6
(C) 1
(D) 2
16. Complex A has a composition of $\mathrm{H}_{12} \mathrm{O}_{6} \mathrm{Cl}_{3} \mathrm{Cr}$. It has green colour. A 0.2 M solution of complex when treated with excess of AgNO_{3} gave 57.45 gm of white precipitate. The formula of the complex would be:
[Given: at mass $\mathrm{Cr}=52 \mathrm{amu}, \mathrm{Cl}=35.5 \mathrm{amu}, \mathrm{Ag}=107.8 \mathrm{amu}$]
(A) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
(B) $\quad\left[\mathrm{CrCl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
(C) $\left[\mathrm{CrCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(D) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right]$
17. The d-electron configuration of $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{NO})\right]^{2+}$ and $\mathrm{K}_{3}\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$ respectively are:
(A) $\quad t_{2 g}^{5} e_{g}^{2}$ and $t_{2 g}^{3} e_{g}^{0}$
(B) $t_{2 g}^{4} e_{g}^{2}$ and $t_{2 g}^{6} e_{g}^{0}$
(C) $\quad t_{2 g}^{6} e_{g}^{0}$ and $t_{2 g}^{4} e_{g}^{2}$
(D) $\quad t_{2 g}^{4} e_{g}^{2}$ and $t_{2 g}^{4} e_{g}^{2}$
18. Three isomers A, B and $C\left(m o l\right.$. formula $\left.\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}\right)$ gives the following results:

B or $\mathrm{C} \xrightarrow{\text { Decarboxylation }} \mathrm{D}\left(\mathrm{C}_{9} \mathrm{H}_{12}\right)$
$\mathrm{A} \xrightarrow{\text { Decarboxylation }} \mathrm{E}$ (an isomer of D$)$
Both D and E are non-resolvable.
D or $\mathrm{E} \xrightarrow{\mathrm{H}^{+} / \mathrm{KMnO}_{4}}$ Benzoic acid
B is more reactive than C towards decarboxylation reaction.
$\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively are:
(A)

(B)

(C)

(D)

19. Match the following drugs with their therapeutic action:
(I)

(a) Antidepressant
(II)

(III)

 Ph
(d) Antacid
(e) Analgesic
(A) (I)-(a); (II)-(c); (III)-(b); (IV)-(e)
(B) (I)-(d); (II)-(a); (III)-(b); (IV)-(c)
(C) (I)-(e); (II)-(a); (III)-(c); (IV)-(d)
(D) (I)-(d); (II)-(c); (III)-(a); (IV)-(e)
20. The major product of the following reaction is:

(A)

(B)

(C)

(D)

SECTION-2

Section 2 contains 10 Numerical Value Type Questions Out of which ONLY 5 (any) questions have to be attempted.

 The answer to each question should be rounded off to the nearest integer.21. 1.34% solution of KNO_{3} is isotonic with 4.77% solution of glucose. Find the percent of dissociation of $\mathrm{KNO}_{3} .($ Given : Atomic mass $\mathrm{K}=39.1 \mathrm{amu}, \mathrm{N}=14 \mathrm{amu}$ and $\mathrm{O}=16 \mathrm{amu})$
22. A weakly alkaline solution of permanganate is electrolysed for 50 minutes using 2 A current. The amount of oxide of manganese obtained. (Given : Atomic mass $\mathrm{Mn}=55 \mathrm{amu}$ and $\mathrm{O}=16 \mathrm{amu}$)
23. The number of ketonic $\quad \mathrm{C}=\mathrm{O}$ groups present in a tripeptide gly - ser-val are \qquad -
24. The density of a solution prepared by dissolving 1 gram molecule of sucrose in 1000 gram of water is $1.15 \mathrm{gm} / \mathrm{ml}$. The molarity of the solution is \qquad -
25. The volume (in mL) of 0.01 M NaOH required to neutralise 20 ml of 0.01 M ortho-phosphoric acid is \qquad .
26. How many peroxide linkages are present in a compound of chromium with oxygen which is blue in colour and soluble in amyl alcohol, produced by treating $\mathrm{K}_{2} \mathrm{CrO}_{4}$ with acidified $\mathrm{H}_{2} \mathrm{O}_{2}$?
27. How many of these compounds will undergo disproportionation on hydrolysis?

$$
\mathrm{CO}_{2}, \mathrm{NO}_{2}, \mathrm{Cl}_{2}, \mathrm{~F}_{2}, \mathrm{ClO}_{2}, \mathrm{Cl}_{2} \mathrm{O}_{6}, \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{SO}_{3}, \mathrm{P}_{4} \mathrm{O}_{10}
$$

28. Number of degree of unsaturation present in cimetidine \qquad .
29. Identify the numbers of amphiprotic species in the following list?

$$
\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{HPO}_{4}^{2-}, \mathrm{HCO}_{3}^{-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HPO}_{3}^{2-}, \mathrm{H}_{2} \mathrm{PO}_{2}^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{H}_{2} \mathrm{PO}_{3}^{-}, \mathrm{PO}_{4}^{3-}, \mathrm{NH}_{4}^{+}
$$

30. Number of geometrical isomers of a complex ion $\left[\operatorname{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Py})_{2} \mathrm{Cl}_{2}\right]^{2+}$ are x , if 1 mole of ethylenediamine replaces two weakest ligands then new complex formed has ' y ' number of geometrical isomers. Find the values of $\frac{x}{y}$.

SECTION-1

This section contains $\mathbf{2 0}$ Multiple Choice Questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.

1. Let $\operatorname{adj} A=\left[\begin{array}{ccc}4 & 0 & 2 \\ 2 & 0 & -3 \\ 3 & 4 & 5\end{array}\right]$ and $B=(\operatorname{adj}(\operatorname{adj} A))^{T}$, if $|A|=\alpha$ and $|B|=\beta$, then $\left|\frac{\sqrt{\beta}}{\alpha}\right|$ is:
(A) 1
(B) 8
(C) 64
(D) None of these
2. The set of all the values of ' a ' for which the roots of the equation $(a-2) x^{2}-2 a x+a=0$ lies in the interval $(-2,1)$.
(A) $\quad a \in\left[0, \frac{8}{9}\right) \cup\{2\}$
(B) $\quad a \in\left(0, \frac{8}{9}\right) \cup\{2\}$
(C) $\quad a \in\left(0, \frac{8}{9}\right)$
(D) $\frac{29}{3}$
3. $\int \cot ^{-1}\left(1-x+x^{2}-x^{3}+x^{4}-x^{5}+\ldots\right) d x(|x|<1)$
(A) $\quad(x+1) \tan ^{-1}(x+1)-\log \sqrt{1+(x+1)^{2}}+C$
(B) $\quad(x-1) \tan ^{-1}(x+1)-\log \sqrt{1-(x+1)^{2}}+C$
(C) $\quad(x+1) \tan ^{-1}(x-1)+\log \sqrt{1+(x+1)^{2}}+C$
(D) $\quad(x-1) \tan ^{-1}(x-1)-\log \sqrt{1-(x-1)^{2}}+C$
4. If the term independent of x in the expansion of $\left(\frac{3}{2} x^{2}+\frac{2}{x}\right)^{12}$ is λ, then $\frac{\lambda}{81}$ is equal to
(A) 9900
(B) 7810
(C) 7920
(D) 7290
5. Mean and variance of 10 positive observations is 7 and 8 . If we add 5 to each number then sum of mean and variance of new data is
(A) 15
(B) 20
(C) 25
(D) can't be determined
6. If $y(y d x+x d y)=x^{3}(x d y-y d x): y(1)=1$ Then
(A) $\quad 2 x=y\left(x^{2}+y^{2}\right)$
(B) $2 y=x\left(x^{2}+y^{2}\right)$
(C) $2 x=y\left(x^{2}-y^{2}\right)$
(D) $2 y=x\left(x^{2}-y^{2}\right)$
7. Find $\operatorname{Re}(z)$, which satisfy $|z|=1$ and $z-\frac{2}{z}=1$
(A) 1
(B) $\quad-1$
(C) 0
(D) None of these
8. $\lim _{x \rightarrow 9^{-}}\left[x^{2}+1\right]+\left[x^{2}-1\right]+\{x\} \quad[$ Here $[$.$] is G I F$ and $\{$.$\} is Fractional part function]$
(A) 127
(B) 160
(C) 161
(D) 162
9. Let p, q, r be three statements such that the truth value of $\sim(\sim p \vee \sim q) \rightarrow(\sim q \vee r)$ is F. Then the truth values of p, q, r are respectively:
(A) $\mathrm{T}, \mathrm{F}, \mathrm{T}$
(B) $\mathrm{T}, \mathrm{T}, \mathrm{T}$
(C) $\mathrm{F}, \mathrm{T}, \mathrm{F}$
(D) $\quad \mathrm{T}, \mathrm{T}, \mathrm{F}$
10. Let S_{1}, S_{2}, S_{3} be the sums of n terms of three series in A.P., the first term of each being 1 and the common differences $1,2,3$, resp. If $S_{1}+S_{3}=\lambda S_{2}$ then the value of λ is:
(A) 1
(B) 2
(C) 3
(D) None of these
11. A chord is drawn from $\mathrm{P}(0,4)$ to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,(a>b, b<2)$ which intersects the major axis at M, foot of perpendicular from centre of ellipse to PM is N, Find PM.NP
(A) 4
(B) $2 \sqrt{2}$
(C) 8
(D) 16
12. $\int_{0}^{1} \frac{x^{13 / 2}}{\left(4-x^{5}\right)^{3 / 2}} d x$
(A) $\frac{5}{2}\left[\frac{1}{\sqrt{3}}-\frac{\pi}{6}\right]$
(B) $\frac{2}{5}\left[\sqrt{3}-\frac{\pi}{6}\right]$
(C) $\frac{2}{5}\left[\frac{1}{\sqrt{2}}+\frac{\pi}{6}\right]$
(D) $\frac{2}{5}\left[\frac{1}{\sqrt{3}}-\frac{\pi}{6}\right]$
13. If $\log _{(2 x+3)} x^{2}<\log _{(2 x+3)}(2 x+3)$ then value of x
(A) $\quad x \in\left[\frac{-3}{2},-1\right) \cup(1,3)$
(B) $\quad x \in\left(\frac{-3}{2},-1\right) \cup(-1,3)-\{0\}$
(C) $\quad x \in\left(\frac{-3}{2},-1\right] \cup[-1,3)$
(D) $\quad x \in\left[\frac{-3}{2},-1\right] \cup(-1,3)$
14. If the surface area of a cube is increasing at a rate of $4.8 \mathrm{~cm}^{2} / \mathrm{sec}$. retaining its shape, then the rate of change of its volume (in $\mathrm{cm}^{3} / \mathrm{sec}$.) when the length of a side of the cube is 15 cm is:
(A) 18
(B) 20
(C) 10
(D) 9
15. Angle between line joining two vertices of a regular tetrahedron to centroid is:
(A) $\pi-\cos ^{-1} \frac{2}{3}$
(B) $\pi-\cos ^{-1} \frac{1}{3}$
(C) $\frac{2 \pi}{3}$
(D) $\frac{3 \pi}{4}$
16. Difference between mean and variance of a binomial variate is ' 1 ' and difference between their square is ' 11 '. Then probability of getting exactly three success is:
(A) ${ }^{39} C_{3}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{36}$
(B) ${ }^{36} C_{3}\left(\frac{1}{6}\right)^{3} \times\left(\frac{5}{6}\right)^{33}$
(C) ${ }^{36} C_{3}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{33}$
(D) ${ }^{36} C_{3}\left(\frac{5}{6}\right)^{3}\left(\frac{1}{6}\right)^{33}$
17. Straight line $3 x+4 y=12$ cuts the co-ordinate axis at point A and B respectively formed a triangle with axes. Then co-ordinate of excentre of triangle lie in IVth Quadrant is:
(A) $\left(\frac{13}{4},-\frac{13}{4}\right)$
(B) $(3,-3)$
(C) $(6,-6)$
(D) $(1,-1)$
18. If $n(A \cup B \cup C)+n(A \cup B \cup C)^{\prime}=50, n(A)=10, n(B)=15 n(C)=20, n(A \cap B)=5$, $n(B \cap C)=6, n(C \cap A)=10, n(A \cap B \cap C)=5$, then the value of $n(A \cup B \cup C)^{\prime}$
(A) 29
(B) 21
(C) 25
(D) 27
19. If the planes $x-c y-b z=0, c x-y+a z=0$ and $b x+a y-z=0$ pass through a straight line, then the value of $a^{2}+b^{2}+c^{2}+2 a b c$ is:
(A) $-a$
(B) 0
(C) -1
(D) 1
20. Find minimum distance between the circle $x^{2}+(y-3)^{2}=1$ and parabola $y^{2}=4 x$
(A) $\sqrt{2}$
(B) 1
(C) $\sqrt{2}-1$
(D) $\sqrt{2}+1$

SECTION-2

Section 2 contains 10 Numerical Value Type Questions Out of which ONLY 5 (any) questions have to be attempted. The answer to each question should be rounded off to the nearest integer.
21. Total number of 3-digit numbers whose product is 12 is \qquad .
22. Image of point $(2,1,3)$ in the plane containing lines $\vec{r}=\hat{i}+\lambda \hat{j}, \vec{r}=\hat{i}+m \hat{k}$ (where, $\lambda, m \in R$) is (α, β, γ) then $(\alpha+\beta+\gamma)=$
23. If tangent to the curve $y=\log x$ at $\left(e^{\lambda}, \lambda\right)$ and normal to the parabola $y^{2}=8 x$ at $(2,4)$ cuts the y axis at the same point on T. Then λ is \qquad .
24. If $2, a_{1}, a_{2}, a_{3} \ldots . . a_{10}, 5$ are in AP and $2, H_{1}, H_{2}, H_{3} \ldots . H_{10}, 5$ are in H.P. then $a_{6} H_{5}$ is \qquad .
25. Let ' s ' be the set of all integral solutions of (x, y, z) the system of equations

$$
\begin{aligned}
& x-2 y-6 z=0 \\
& -2 x+3 y+9 z=0 \\
& 3 x-5 y-15 z=0 \\
& \text { and } 10 \leq x^{2}+y^{2}+z^{2} \leq 200 \text { then number of element in the set ' } s \text { ' }
\end{aligned}
$$

26. Number of three digit numbers that can be formed by digits $1,2,3,4,5,6,7,8,9$ such that number is divisible by 3. (Repetition of digits allowed)
27. $I=\int_{\pi}^{\frac{\pi}{2}}\left[\cos ^{3} x(1+\cos x)+\sin ^{3} x(1+\sin x)\right] d x$. Then $24 I-18 \pi=$ $-\frac{\pi}{2}$
28. $\left(1+2 x+3 x^{2}+4 x^{3} \ldots .\right)^{-2}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots a_{n} x^{n}$. Then $\left|a_{0}-a_{1}\right|=$
29. Number of solutions of the equation $\cot ^{-1} x=1-|x|$ is \qquad .
30. $|z-i|=\operatorname{Im}(z)$ represents a conic with foci (α, β) then $\alpha+\beta=$

End of Mock JEE Main-7

[^0]: Name of the Candidate (In CAPITALS) : \qquad
 Roll Number : \qquad
 OMR Bar Code Number : \qquad
 Candidate's Signature :

