

Number System

Real Numbers

Number Line : Representation of various types of numbers on the number line.

							1		N
-3	-2	-1	<u>-1</u>	0	1	1	1	2	3
			2		1	2			

- Various types of Numbers :
 - Set of Natural Numbers, $N = \{1, 2, 3, ...\}$ (i)
 - Set of whole numbers, $W = \{0, 1, 2, 3, ...\}$ (ii) Number line of W
 - 2 3 0 1
 - 4 (iii) Set of integers, $Z = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
 - (iv) Rational numbers : A number 'r' is called a rational

number, if it can be written in the form $\frac{p}{a}$, where p and

q are integers and $q \neq 0$.

Rational Numbers between any two given Rational Numbers : In general, there are infinitely many rational numbers between any two given rational numbers. To find a rational number between s and t and divide by 2, that is,

 $\frac{s+t}{2}$ lies between s and t. Proceeding in this manner, we

may find more rational numbers between s and t.

Irrational Numbers : A number 's' is called irrational, if it

cannot be written in the form $\frac{p}{q}$, where p and q are integers

and $q \neq 0$.

Examples: $\sqrt{2}, \sqrt{3}, \sqrt{15}, \Pi, 0.1011011101110...$

Note : when we use the symbol $\sqrt{}$, we assume that it is the positive square root of the number. So, $\sqrt{4} = 2$, though both 2 and -2 are square roots of 4.

Properties of Decimal expansion of Rational Numbers

- Sum or difference of a rational and an irrational number (i) is irrational.
- The product and quotient of a non-zero rational and (ii) irrational number is irrational.
- (iii) If p is a prime and p divides a^2 , then p divides 'a' where a is a positive integer.

Real Numbers : The set of rational numbers and irrational numbers form a set of real numbers. Which is denoted by R.

Real Number and their decimal expansions :

- Terminating Decimal Expansions : In this case, the decimal expansion terminates or ends after a finite number of steps. We call such a decimal expansion as terminating.
- Non-terminating Recurring Expansions : In this case we have a repeating block of digits in the quotient. We say that this expansion is non-terminating recurring.
 - The decimal expansion of a rational number is either (i) terminating or non-terminating recurring. Moreover, a number whose decimal expansion is terminating or non-terminating recurring is rational.
 - (ii) The decimal expansion of an irrational number is nonterminating non-recurring. Moreover, a number whose decimal expansion is non-terminating non- recurring is irrational.
- Operations on Rational Numbers : Rational numbers satisfy the commutative, associative and distributive laws for addition and multiplication.
- **Operations on Irrational Numbers :** Irrational numbers also satisfy the commutative, associative and distributive laws for addition and multiplication.

Some useful facts

- (i) The sum or difference of a rational number and an irrational number is irrational.
- (ii) The product or quotient of a non-zero rational number with an irrational number is irrational.
- (iii) If we add, subtract, multiply or divide two irrationals, the result may be rational or irrational.
- nth Root of a Real Number : Let a > 0 be a real number and *n* be a positive integer.

Then $\sqrt[n]{a} = b$, if $b^n = a$ and b > 0.

Some Identities related to Square Roots : Let a and b be positive real numbers. Then

(i)
$$\sqrt{ab} = \sqrt{a} \sqrt{b}$$

(ii) $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

(*iii*)
$$(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) = a - b$$

(*iv*) $(a + \sqrt{b})(a - \sqrt{b}) = a^2 - b$

(v)
$$(\sqrt{a} + \sqrt{b})(\sqrt{c} + \sqrt{d}) = \sqrt{ac} + \sqrt{ad} + \sqrt{bc} + \sqrt{bd}$$

(vi) $(\sqrt{a} + \sqrt{b})^2 = a + 2\sqrt{ab} + b$

• **Rationalisation :** When the denominator of an expression contains a term with a square root, the procedure of converting it to an equivalent expression whose denominator is a rational number is called rationalising the denominator.

Laws of Exponents for Real Numbers

- (i) $a^m \cdot a^n = a^{m+n}$ (ii) $(a^m)^n = a^{mn}$
- (*iii*) $\frac{a^m}{a^n} = a^{m-n}, m > n$
- (*iv*) $a^m b^m = (ab)^m$ where *a* is called the base and *m* and *n* are the exponents.
- (v) Value of $(a)^0$: We have $(a)^0 = 1$.

$$(vi) \quad a^{-n} = \frac{1}{a^n}.$$

- **Definition :** Let a > 0 be a real number. Let m and n be integers such that m and n have no common factors other than 1, and
 - n > 0. Then, $a^{m/n} = (\sqrt[n]{a})^m = \sqrt[n]{a^m}$.

Euclid's Division Lemma (E.D.L)

Given two positive integers a and b, there exist unique integers q and r such that

$$a = bq + r, \quad 0 \le r < t$$

Euclid division Lemma can be used to find highest common factor (HCF) of two positive integers.

Fundamental Theorem of Arithmetic

Every composite number can be expressed (factorise) as a product of primes and this factorisation is unique. (neglecting the order in which the prime factors occur).

• Regarding decimal expansion of rational number $x = \frac{p}{q}$

where p, q are co-prime integers and $q \neq 0$, we have

- x is a terminating decimal expansion if prime factorisation of q is of the form 2^m 5ⁿ where m,n are non-negative integers.
- (ii) If prime factorisation of q is not of the form 2^m 5ⁿ then x is a non-terminating repeating decimal expansion.

To find the H. C. F. and L. C. M. by Prime Factorisation method

- (i) H. C. F. = Product of each common prime factor(s) with smallest power involved in the numbers.
- (ii) L.C. M. = Product of each prime factors with greatest power involved in the numbers.
- (iii) For any two positive numbers *a* and *b*, H. C. F. $(a, b) \times L.C. M. (a, b) = a \times b$ **Note :** For any three positive integers *p*, *q* and *r* H.C. F. $(p, q, r) \times L.C. M. (p, q, r) \neq p \times q \times r$ where H. C. F. (a, b) means H. C. F. of *a* and *b* and L.C.M. (a, b) means L.C. M. of *a* and *b*.

DIRECTIONS : This section contains multiple choice

Exercise

DIRECTIONS : This section contains multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) out of which only one is correct.

- 1. $\left(\frac{1}{64}\right)^{0} + (64)^{-1/2} (-32)^{4/5}$ is equal to (1) $-15\frac{7}{8}$ (2) $16\frac{1}{8}$ (3) $-14\frac{7}{8}$ (4) $17\frac{1}{8}$
- 2. The value of x, when $2^{x+4} \cdot 3^{x+1} = 288$ is (1) 1 (2) -1

3. Value of

$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \frac{1}{\sqrt{4}+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{6}} + \frac{1}{\sqrt{6}+\sqrt{7}} + \frac{1}{\sqrt{7}+\sqrt{8}} + \frac{1}{\sqrt{8}+\sqrt{9}}$$
(1) 2 (2) 3
(3) 4 (4) 5

4. A rational number between $\sqrt{2}$ and $\sqrt{3}$ is

(1)	$\frac{\sqrt{2}+\sqrt{3}}{2}$	(2)	$\frac{\sqrt{2}\times\sqrt{3}}{2}$
(3)	1.5	(4)	1.4

- (3) 1.55. The value of 0.423 is
 - (1) $\frac{423}{1000}$ (2) $\frac{423}{100}$ (3) $\frac{423}{990}$ (4) $\frac{419}{990}$
- 6. Value of x satisfying $\sqrt{x+3} + \sqrt{x-2} = 5$ is (1) 6 (2) 7 (3) 8 (4) 9
- 7. $\sqrt{7-4\sqrt{3}} =$
 - (1) $2-\sqrt{3}$ (2) $1-\sqrt{3}$
 - (3) $2+\sqrt{3}$ (4) $1+\sqrt{3}$
- 8. If $\sqrt{3} = 1.732$, then the value of $\frac{1}{\sqrt{3} 1}$ is (1) 5.689 (2) 1.366
 - (1)
 5.009
 (2)
 1.500

 (3)
 7.188
 (4)
 1.867

- 9. Rationalizing factor of $2 + \sqrt{3} =$
- (1) $2-\sqrt{3}$ (2) $\sqrt{3}$ (3) $2+\sqrt{3}$ (4) $3+\sqrt{3}$ 10. Value of $\sqrt[3]{\left(\frac{1}{64}\right)^{-2}}$ is (1) 4 (2) 16 (3) 32 (4) 64 11. Euclid's Division Lemma states that for any two positive integers *a* and *b*, there exist unique integers *q* and *r* such that a = bq + r, where *r* must satisfy
 - (1) 1 < r < b(2) 0 < r < b(3) $0 \le r < b$ (4) $0 < r \le b$
- **12.** The decimal expansion of $\frac{21}{45}$ is
 - (1) terminating
 - (2) non-terminating and repeating
 - (3) non-terminating and non-repeating
 - (4) none of these
- **13.** If $112 = q \times 6 + r$, then the possible values of *r* are
 - $(1) \quad 1, 2, 3, 4 \qquad (2) \quad 0, 1, 2, 3, 4, 5$
 - $(3) \quad 0, 1, 2, 3 \qquad (4) \quad 2, 3, 5$
- 14. By Euclid's division lemma x = qy + r, x > y, the value of q and r for x = 27 and y = 5 are
 - (1) q = 5, r = 3
 - (2) q = 6, r = 3
 - (3) q = 5, r = 2
 - (4) cannot be determined
- 15. If $\frac{p}{q}$ is a terminating decimal, what can you say about q?
 - (1) q must be in the form 2^n
 - (2) q must be in the form 5^m
 - (3) q must be in the form $2^{n}.5^{m}$
 - (4) q must be in the form $2^{n}.5^{m}$, where n and m are non negative integers.

16. If
$$\frac{32}{500} = \frac{32}{(2)^2 \times (5)^m}$$
, then the value of *m* is

(3) 4 (4) .
17.
$$7 \times 11 \times 13 + 13$$
 is a/an

(1) prime number

- (1) prime number (2) a_{a}
- (2) composite number
- (3) odd number but not composite
- (4) none of these
- 18. For some integer *m*, every even integer is of the form
 - (1) m (2) m+1
 - (3) 2m (4) 2m+1

- 19. Prime factorisation of the denominators of the rational number 34.12345 is of the form :
 - (1) $2^m \times 5^n$ where *m*, *n* are integers.
 - (2) $2^m \times 5^n$ where *m*, *n* are positive integers.
 - (3) $2^m \times 5^n$ where *m*, *n* are non-negative integers.
 - (4) denominator has factors other than 2 or 5.

20. Prime factorization of the denominator of the rational number

 $34.\overline{5678}$ is of the form :

- (1) $2^m \times 5^n$ where *m*, *n* are integers
- (2) $2^m \times 5^n$ where *m*, *n* are positive integers
- (3) $2^m \times 5^n$ where *m*, *n* are non-negative integers
- (4) denominator has factors other than 2 or 5.
- 21. Which of the following is not correct?
 - (1) $\frac{1}{7}$ is rational having non-terminating is repeating decimal fraction.
 - (2) $\frac{11}{30}$ is rational non-terminating repeating decimal.
 - (3) $\frac{51}{91}$ is rational having non-terminating repeating decimal.
 - (4) $\frac{13}{125}$ is rational having non-terminating repeating decimal.
- 22. $119^2 - 111^2$ is
 - (2) composite (1) prime number (3) odd prime (4) odd composite
- 23. Which of the following is true?

(1) π is equal to $\frac{22}{7}$.

- (2) The only real numbers are rational numbers.
- (3) Every non-terminating decimal can be written as a periodic decimal.

441

- (4) 0.21 lies between 0.2 and 0.3.
- 24. Which of the following has terminating decimal expansion?

(1)
$$\frac{64}{455}$$
 (2) $\frac{19}{2^3 5^6}$
(3) $\frac{29}{242}$ (4) $\frac{125}{441}$

25. Which of the following is irrational?

(1)
$$\frac{22}{7}$$

(2) 3.141592

343

- (3) 2.78181818
- (4) 0.123 223 222 322 22 3
- Rational number between $\sqrt{2}$ and $\sqrt{3}$ is 26.

(1)
$$\frac{\sqrt{2} + \sqrt{3}}{2}$$
 (2) $\frac{\sqrt{2} \times \sqrt{3}}{2}$
(3) 1.5 (4) 1.8

- 27. The number $(\sqrt{x} + \sqrt{y})(\sqrt{x} \sqrt{y})$ where x, y > 0 is
 - (1) rational (2) irrational
 - (3) both (4) none
- Which of the following numbers has the terminal decimal 28. representation?

(1)
$$\frac{1}{7}$$
 (2) $\frac{1}{3}$
(3) $\frac{3}{5}$ (4) $\frac{17}{3}$

- 29. Which of the following is not a rational number?
 - (1) $\sqrt{2}$ (2) $\sqrt{4}$ (3) $\sqrt{9}$ (4) $\sqrt{16}$
- The rational number of the form $\frac{p}{q}$, $q \neq 0$, p and q are 30.

positive integers, which represents $0.1\overline{34}$ i.e., (0.1343434...)is

- (1)999 990
- 133 (3) (4)000 990
- 31. Which of the following will have a terminating decimal expansion ?

(1)	$\frac{77}{210}$	(2)	$\frac{23}{30}$
(3)	$\frac{125}{441}$	(4)	$\frac{23}{8}$

441 32. π is

- (1) rational (2) irrational (3) imaginary (4) an integer
- Rationalizing factor of $1 + \sqrt{2} + \sqrt{3}$ is 33.
 - (1) $1 + \sqrt{2} \sqrt{3}$ (2) 2 (4) $1 + \sqrt{2} + \sqrt{3}$ (3) 4

34. The smallest rational number by which $\frac{1}{3}$ should be multiplied so that its decimal expansion terminates after one place of decimal, is

- (1) $\frac{3}{10}$ (2) $\frac{3}{100}$ (3) 3 (4)
- 35. If a sum of LCM and HCF of two numbers is 1260 and their LCM is 900 more than their HCF, then the product of two numbers is
 - (1) 203400 (2) 194400
 - (3) 198400 (4) 205400

MCQ Based Questions

DIRECTIONS (Qs. 1 to 8) : This section contains multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) out of which only one is correct.

The value of 1.

$\frac{2^{1/2}}{10}$	$\frac{2 \times 3^{1/3} \times 4^{1/4}}{3^{-1/5} \times 5^{3/5}}$:	$\frac{4^{-2/3} \times 5^{-7/5}}{4^{-3/5} \times 6^{-1/3}}$	is equal	to
(1)	10	(2)	1	
(3)	6	(4)	18	

- The value of $\frac{6^n \times 2^{2n} \times 3^{3n}}{30^n \times 3^{2n} \times 2^{3n}}$ is equal to 2.
 - (2) .3⁻ⁿ (1) 1 (3) 3^{-n} (4) .3ⁿ

3. The value of
$$\frac{2^{m+3} \times 3^{2m-n} \times 5^{m+n+3} \times 6^{n+1}}{6^{m+1} \times 10^{n+3} \times 15^m}$$
 is equal to

(1) 0 (2) 1 (2)
$$1$$

- (4) none of these (3) 2^m
- The exponent of 2 in the prime factorisation of 144, is 4. (1) 4 (2) 5

5. If $n = 2^3 \times 3^4 \times 4^4 \times 7$, then the number of consecutive zeros in *n*, where *n* is a natural number, is (1) 2(2) 2

(1)	2	(2)	5
(3)	4	(4)	7

- 6. If p_1 and p_2 are two odd prime numbers such that
 - $p_1 > p_2$, then $p_1^2 p_2^2$ is
 - (1) an even number (2) an odd number
 - (3) an odd prime number (4) a prime number
- Which of the following rational numbers have terminating 7. decimal?

(i)
$$\frac{16}{225}$$
 (ii) $\frac{5}{18}$
(iii) $\frac{2}{21}$ (iv) $\frac{7}{250}$

- (3) (i) and (iii) (4) (i) and (iv)
- What is the number x ? 8.
 - The L.C.M of *x* and 18 is 36. I
 - II. The H.C.F of x and 18 is 2.

Matching Based Questions

DIRECTIONS (Q. 9) : Match the Column-I with Column-II and select the correct answer given below the columns.

9.		Column-I	Column-II		
	A.	An irrational number	(p)	$\frac{52}{125}$	
		between $\sqrt{2}$ and $\sqrt{3}$ is			
	B.	Value of 0.424 is	(q)	$2 - \sqrt{3}$	
	C.	If $\sqrt{3} = 1.732$, then	(r)	$\frac{\sqrt{2}+\sqrt{3}}{2}$	
		value of $(2+\sqrt{3})$ is			
	D.	Rationalising factor of $(2+\sqrt{3})$ is	(s)	3732	
	(1)	A - (s), B - (q), C - (r), D - (p)			
	(2) $A - (r), B - (p), C - (s), D - (q)$ (3) $A - (q), B - (r), C - (s), D - (p)$				
	(4)	A - (r), B - (s), C - (p), D - (q)			
		Statement Based Que	estio	ns	
10.	Con	sider the following statements :			
	(a)	Every integer is a rational numb	ber		

- (a) Every integer is a rational number.
 - (b) The sum of a rational number and an irrational number is an irrational number.
 - (c) Every real number is rational.
 - (d) Every point on a number line is associated with a real number.
 - Which of these statement(s) is/are not correct?
 - (1) a and b only (2) b and c only
 - (3) Only a and c (4) only d
- 11. Consider the following statements :
 - (a) Every fraction is a rational number.
 - (b) Every rational number is a fraction.
 - (c) Every integer is a rational number.
 - Which of these statement(s) is/are correct?
 - (2) a and b (1) a, b and c only
 - (4) b and c (3) a and c
- 12. Consider the following statements :
 - (a) Between two integers, there exist infinite number of rational numbers
 - (b) Between two rational numbers, there exist infinite number of integers
 - Between two rational numbers, there exist infinite (c) number of rational numbers
 - (d) Between two real numbers, there exists infinite number of real numbers
 - Which of these statements is/are not correct?
 - (1) only a (2) only b
 - (3) only a and c (4) Both b and d

Passage Based Questions

DIRECTIONS (Qs. 13 to 17) : Read the passage(s) given below and answer the questions that follow.

PASSAGE - I

If p is prime, then \sqrt{p} is irrational and if a, b are two odd prime numbers, then $a^2 - b^2$ is composite.

(4) terminating decimal

- **13.** $\sqrt{7}$ is
 - (1) a rational number (2) an irrational number
 - (3) not a real number
- **14.** $119^2 111^2$ is
 - (1) prime number
 - (2) composite
 - (3) an odd prime number
 - (4) an odd composite number

PASSAGE - II

LCM of several fractions $= \frac{\text{LCM of their numerators}}{\text{HCF of their denominators}}$

UCE of accord frontions	HCF of their numerators
HCF of several fractions -	LCM of their denominators

- 15. The L.C.M. of the fractions $\frac{5}{16}, \frac{15}{24}$ and $\frac{25}{8}$ is
 - (1) $\frac{5}{48}$ (2) $\frac{5}{8}$

(3)
$$\frac{75}{48}$$
 (4) $\frac{75}{8}$

- 16. The H.C.F. of $\frac{2}{5}, \frac{6}{25}$, and $\frac{8}{35}$ is
 - (1) $\frac{2}{5}$ (2) $\frac{24}{5}$
 - (3) $\frac{2}{175}$ (4) $\frac{24}{175}$

- 17. The H.C.F. of the fractions $\frac{8}{21}, \frac{12}{35}, \text{ and } \frac{32}{7}$ is
 - (1) $\frac{4}{105}$ (2) $\frac{192}{7}$ (3) $\frac{4}{7}$ (4) $\frac{5}{109}$

Assertion Reason Based Questions

DIRECTIONS (Qs. 18 to 21) : Following questions consist of two statements, one labelled as the **'Assertion' (A)** and the other as **'Reason' (R)**. You are to examine these two statements carefully and select the answer to these items using the code given below.

Code :

- (1) Both A and R are individually true and R is the correct explanation of A:
- (2) Both A and R are individually true but R is not the correct explanation of A.
- (3) A is true but R is false
- (4) A is false but R is true.
- **18.** Assertion : 2 is a rational number.
 - **Reason** : The square roots of all positive integers are irrationals.
- **19.** Assertion : $5\sqrt{3}$ is an irrational number.
 - **Reason** : For any two given integers a and b there exist unique integers q and r satisfying a = bq + r; $0 \le r < b$
- **20.** Assertion : The H.C.F. of two numbers is 16 and their product is 3072. Then their L.C.M = 162.
 - **Reason** : If a, b are two positive integers, then H.C.F × L.C.M. = $a \times b$.
- **21.** Assertion : If L.C.M. $\{p, q\} = 30$ and H.C.M $\{p, q\} = 5$, then p.q = 150.
 - **Reason** : L.C.M. of $a, b \times H.C.F$ of a, b = a.b.

Hints

SOLUTIONS

Exercise

- 1. (3) (1) 3. (1) 4. (3) 2. 5. 7. (3) (4) 6. (1) 8. (2) 9. 10. (1) (1)
- 11. (3) $0 \le r \le b$
- $\frac{21}{45} = \frac{21}{9 \times 5} = \frac{21}{3^2 \times 5}$. Clearly, 45 is not of the form 12. (2)

 $2^m \times 5^n$. So the decimal expansion of $\frac{21}{45}$ is non-terminating

and repeating.

- (2) For the relation x = qy + r, $0 \le r < y$ 13. So, here *r* lies between $0 \le r < 6$. Hence, r = 0, 1, 2, 3, 4, 5
- (3) $x = qy + r \implies 27 = 5 \times 5 + 2 \implies q = 5, r = 2$ 14.
- (4) For any rational number $\frac{p}{q}$, where prime factorization of q 15.

is of the form $2^{n}.5^{m}$, where *n* and *m* are non-negative integers, the decimal representation is terminating.

16. (2)
$$\frac{32}{500} = \frac{32}{(2)^2 \times (5)^3}$$

[:: $500 = 2 \times 2 \times 5 \times 5 \times 5$]
:: $m = 3$
17. (2) We have, $7 \times 11 \times 13 + 13$
 $= 13 (77 + 1) = 13 \times 78$
Since, the given number has 2 more factors other than

an 1 and itself, so, it is a composite number.

- 18. (3)
- 19. (3)
- 20. (4)

(4) Since $\frac{13}{125} = \frac{13}{53} = \frac{132^3}{(2)^3(5)^3} = \frac{104}{1000} = 0.104$ 21.

- \therefore (4) is not-correct (1), (2), (3) are correct (4) holds. *.*..
- 22. (2)
- : 0.2 < 0.21 < 0.323. (4)
- 24. (2)
- 25. (4) \therefore number given in option 'd' is neither terminating nor repeating decimal.
- A and B are irrational. Number D is does not lie between $\sqrt{2}$ (3) 26. and $\sqrt{3}$.
- 27. (1)
- (3) $\frac{3}{5} = 0.6$ where as other numbers have non-terminating 28. decimals.

- $\sqrt{2}$ is not a rational number. It can't be expressed in the 29. (1) fractional form.
- $0.1\overline{34} = \frac{134 1}{990} = \frac{133}{990}$ (4) 30.
- 31. (4)
- (2) 32. π is irrational
- 33. (1)
- 34. (1)
- 35. (2)

1.

2.

3.

Exercise

(1)
$$\frac{2^{1/2} \times 3^{1/3} \times 4^{1/4}}{10^{-1/5} \times 5^{3/5}} \div \frac{4^{-2/3} \times 5^{-7/5}}{4^{-3/5} \times 6^{-1/3}}$$
$$= \frac{2^{1/2} \times 3^{1/3} \times 2^{1/2}}{2^{-1/5} \times 5^{-1/5} \times 5^{3/5}} \div \frac{2^{-4/3} \times 5^{-7/5}}{2^{-6/5} \times 2^{-1/3} \times 3^{-1/3}}$$
$$= \frac{2^{6/5} \times 3^{1/3}}{5^{2/5}} \div \frac{2^{1/5} \times 3^{1/3}}{5^{7/5}}$$
$$= 2^{\frac{6}{5} - \frac{1}{5}} \times 5^{\frac{7}{5} - \frac{2}{5}} = 2 \times 5 = 10.$$

(4)
$$\frac{6^n \times 2^{2n} \times 3^{3n}}{30^n \times 3^{2n} \times 2^{3n}} = \frac{2^n \times 3^n \times 2^{2n} \times 3^{3n}}{5^n \times 2^n \times 3^n \times 3^{2n} \times 2^{3n}} = \frac{3^n}{5^n \times 2^n}$$

$$= \left(\frac{3}{10}\right)^{n} = (0.3)^{n}$$
(2)
$$\frac{2^{m+3} \times 3^{2m-n} \times 5^{m+n+3} \times 2^{n+1} \times 3^{n+1}}{2^{m+1} \times 3^{m+1} \times 2^{n+3} \times 5^{n+3} \times 3^{m} \times 5^{m}}$$

$$=\frac{2^{m+n+4}\times 3^{2m+1}\times 5^{m+n+3}}{2^{m+n+4}\times 3^{2m+1}\times 5^{m+n+3}}=1$$

- 4. (1) 5.
 - (2)

8.

9.

(4) $L.C.M \times H.C.F = First number \times second number$

Hence, required number = $\frac{36 \times 2}{18} = 4$.

- $(A) \rightarrow (r), (B) \rightarrow (p), (C) \rightarrow (s), (D) \rightarrow (q)$ (2)
- 10. (4)
- 11. (3) 'a' and 'c' are correct.
- 12. (2) only statement b is not correct.
- 13. (2)
- 14. (2)

15. (4) L.C.M. of $\frac{5}{16}$, $\frac{15}{24}$ and $\frac{25}{8} = \frac{\text{L.C.M. of numerators}}{\text{H.C.F. of denominators}}$ L.C.M. of 5, 15 and 25 is 75. H.C.F. of 16, 24 and 8 is 8.

The HCF of the given fractions = $\frac{75}{8}$

16. (3) H.C.F. of the fractions $= \frac{\text{H.C.F. of numerators}}{\text{L.C.M. of denominators}}$ H.C.F. of 2, 6 and 8 is 2. L.C.M. of 5, 25 and 35 is 175.

Thus, the H.C.F. of the given fractions $=\frac{2}{175}$

17. (1) H.C.F. of given fraction is

$$=\frac{\text{H.C.F. of 8, 12, 32}}{\text{L.C.M. of 21, 35, 7}}=\frac{4}{105}$$

18. (3) Here reason R is not true.

 $\therefore \sqrt{4} = \pm 2$, which is not an irrational number. Clearly assertion is true.

19. (2) If possible, let $5\sqrt{3}$ be a rational number.

So $5\sqrt{3} = \frac{p}{q}$, where p and q are integers and $q \neq 0$ $\Rightarrow \sqrt{3} = \frac{p}{5q}$

Since, p, q and 5 are integers therefore $\frac{p}{5q}$ is a rational number.

Hence, $\sqrt{3}$ is a rational number, which is a contradiction.

Therefore, $5\sqrt{3}$ is an irrational number.

: Assertion is true. Reason is also true but not the correct explanation of Assertion.

20. (4) Here reason is true [standard result]

Assertion is false.
$$\therefore \frac{3072}{16} = 192 \neq 162$$
 \therefore (4) holds

21. (1)