FIITJEG - JEE (Main)

Batches: $12^{\text {th }}$ Studying \& 12 ${ }^{\text {th }}$ Pass PHYSICS, CHEMISTRY \& MATHEMATICS Mock Test - I QP Code:

Time Allotted: 3 Hours
Maximum Marks: $\mathbf{3 0 0}$

[^0]
Important Instructions:

A. General Instructions

1. Immediately fill in the particulars on this page of the Test Booklet with Blue / Black Ball Point Pen. Use of pencil is strictly prohibited.
2. The Answer Sheet is kept inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars carefully.
3. The test is of $\mathbf{3}$ hours duration.
4. The Test Booklet consists of 75 questions. The maximum marks are 300 .
5. This question paper contains Three Parts.
6. Part-I is Physics, Part-II is Chemistry and Part-III is Mathematics.
7. Each Part has only one section: Section - A.
8. Rough spaces are provided for rough work inside the question paper. No additional sheets will be provided for rough work.
9. Blank Papers, clip boards, log tables, slide rule, calculator, cellular phones, pagers and electronic devices, in any form, are not allowed.
10. Use Blue / Black Ball Point Pen only for writing particulars / marking responses on Side-1 and Side-2 of the Answer Sheet. Use of pencil is strictly prohibited.
11. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc. except the Admit Card inside the examination hall / room.
12. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator on duty in the Room / Hall. However, the candidates are allowed to take away this Test Booklet with them.
13. Do not fold or make any stray marks on the Answer Sheet.
B. Marking Scheme For All Three Parts.
(i) Section-A (01-20, 26 - 45, 51 - 70) contains 60 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and -1 mark for wrong answer.

Section-A (21-25, 46-50, 71-75) contains 15 Numerical based questions, the answer of which maybe positive or negative numbers or decimals and each question carries $\mathbf{+ 4}$ marks for correct answer. There is no negative marking.

Name of the Candidate (in Capital Letters) : \qquad
Enrolment Number : \qquad
Batch : \qquad Date of Examination : \qquad

PART - I: PHYSICS

Section - A: Single Correct Answer Type

This section contains $\mathbf{2 0}$ multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

1. A car accelerates from rest at a constant rate a for some time, after which it decelerates at a constant rate β to come to rest. If the total time elapsed is t, the maximum velocity attained by the car is given by
(A) $\left[\frac{\alpha \beta}{\alpha+\beta}\right] t$
(B) $\left[\frac{\alpha+\beta}{\alpha \beta}\right] \mathrm{t}$
(C) $\left[\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}\right] \mathrm{t}$
(D) $\left[\frac{\alpha^{2}-\beta^{2}}{\alpha \beta}\right] \mathrm{t}$
2. Vectors ' a ' and ' b ' include an angle θ between them. If $(a+b)$ and $(a-b)$ respectively subtend angles α and β with ' a ', then $(\tan \alpha+\tan \beta)$ is
(A) $\frac{\mathrm{ab} \sin \theta}{\mathrm{a}^{2}+\mathrm{b}^{2} \cos ^{2} \theta}$
(B) $\frac{2 \mathrm{ab} \sin \theta}{\mathrm{a}^{2}-\mathrm{b}^{2} \cos ^{2} \theta}$
(C) $\frac{a^{2} \sin ^{2} \theta}{a^{2}+b^{2} \cos ^{2} \theta}$
(D) $\frac{b^{2} \sin ^{2} \theta}{a^{2}-b^{2} \cos ^{2} \theta}$
3. A block of mass m is placed on an inclined plane with the angle of inclination θ. Let $\mathrm{N}, \mathrm{f}_{\mathrm{L}}$ and F respectively represent the normal reaction, limiting force of friction and the net force down the inclined plane. Let μ be the coefficient of friction. The dependence of N, f_{L} and F on θ is indicated by plotting graphs as shown below. Then curve (1), (2) and (3) respectively represent
(A) N, F and f_{L}
(B) F, fL and N
(C) F, N and fL
(D) $f_{L}, \mathrm{~N}$ and F

4. A cubical block is in a floating equilibrium in a liquid with half of its volume submerged as shown in the figure at temperature T .
$\alpha_{s} \rightarrow$ coefficient of linear expansion of block
$\gamma_{L} \rightarrow$ coefficient of volume expansion of liquid
$\rho_{\mathrm{s}} \rightarrow$ density of block at temperature T
$\rho\llcorner\rightarrow$ density of liquid at temperature T
If the depth of the block submerged in the liquid does not change on increasing temperature, then ratio of α_{s} to $\gamma\llcorner$ is

(A) $1 / 2$
(B) 3
(C) 2
(D) 1
5. A uniform slender rod $A B$ of mass m is suspended from the two identical springs as shown. The accleration of point B immediately after spring (2) is cut is:
(A) $-\left(\frac{\sqrt{3}}{2} g \hat{i}+g \hat{j}\right) \mathrm{m} / \mathrm{s}^{2}$
(B) $\left(\frac{\sqrt{3}}{2} g \hat{i}+g \hat{j}\right) \mathrm{m} / \mathrm{s}^{2}$
(C) $\frac{\sqrt{3}}{2} g \hat{j} \mathrm{~m} / \mathrm{s}^{2}$
(D) $-\frac{\sqrt{3}}{2} \mathrm{~g} \hat{j} \mathrm{~m} / \mathrm{s}^{2}$

6. A rod of mass m and length ℓ is hinged at O so that it can rotate freely in the vertical plane about O. A soap film is formed between the rod and support wall as shown in the figure. If the rod is in equilibrium, the value of surface tension of the liquid is:
(A) $\frac{\mathrm{mg}}{2 \ell \sin \theta}$
(B) $\frac{\mathrm{mg} \sin \theta}{\ell}$
(C) $\frac{m g \sin \theta}{2 \ell}$
(D) $\frac{\mathrm{mg}}{\ell \sin \theta}$
7. A stone of weight W is thrown vertically upwards into air with an initial velocity v_{0}. If a constant force F due to air drag acts on the stone throughout its motion, the speed of the stone upon impact with the ground is
(A) $v_{0}\left(\frac{W+F}{W-F}\right)^{1 / 2}$
(B) $v_{0}\left(\frac{W-F}{W+F}\right)^{1 / 2}$
(C) $\frac{v_{0}}{2}\left(\frac{W}{F}\right)^{1 / 2}$
(D) $v_{0}\left(\frac{F}{W}\right)^{1 / 2}$
8. An uncharged metallic hollow sphere ' S ' of radius R is held fixed. A point charge ' q ' is kept at B which is at a distance ' r ' from the A point charge ' q ' is kept at B which is at a distance ' r ' from the
centre of the shell. The magnitude of electric field at point A due to the induced charges on the shell is
(A) $\frac{\mathrm{kq}}{\mathrm{r}^{2}}$
(B) $\frac{\mathrm{kq}}{\mathrm{x}^{2}}$
(D) none of these
(C) $k q\left(\frac{1}{r^{2}}-\frac{1}{x^{2}}\right)$

9. Two very long straight parallel wires, parallel to y-axis, carry currents 4 I and I , along +y direction and -y direction, respectively. The wires are passes through the x-axis at the points ($d, 0,0$) and (- $d, 0,0$) respectively. The graph of magnetic field z-component as one moves along the x-axis from $x=-d$ to $x=+d$, is best given by
(A)

(B)

(C)

(D)

10. A charged particle moves in a magnetic field $\vec{B}=10 \hat{i}$ with initial velocity $\vec{u}=5 \hat{i}+4 \hat{j}$. The path of particle is
(A) straight line
(B) circle
(C) helical
(D) none
11. A semi circular current carrying wire having radius R is placed in $x-y$ plane with its centre at origin ' O '. There is non-uniform magnetic field $\vec{B}=\frac{B_{0} x}{2 R} \hat{k}$, (where B_{0} is a positive constant) existing in the region. The magnetic force acting on semi circular wire will
 be along
(A) negative x - axis
(B) positive y - axis
(C) negative y - axis
(D) positive x - axis
12. In an L-R circuit connected to a battery of constant e.m.f. E. Switch S is closed at time $t=0$. If e denotes the magnitude of induced e.m.f. across inductor and i the current in the circuit at any time t. Then which of the following graphs shows the variation of e with i?
(A)

(B)

(C)

(D)

13. The given figure represents the phasor diagram of a series LCR circuit connected to an ac source. At the instant t ' when the source voltage is given by $\mathrm{V}=\mathrm{V}_{0} \cos \omega \mathrm{t}$, the current in the circuit will be
(A) $I=I_{0} \cos \left(\omega t+\frac{\pi}{6}\right)$
(B) $I=I_{0} \cos \left(\omega t-\frac{\pi}{6}\right)$
(C) $I=I_{0} \cos \left(\omega t+\frac{\pi}{3}\right)$
(D) $\mathrm{I}=\mathrm{I}_{0} \cos \left(\omega \mathrm{t}-\frac{\pi}{3}\right)$

14. A ray of light is incident on a concave mirror. It is parallel to the principal axis and its height from principal axis is equal to the focal length of the mirror. The ratio of the distance of point B to the distance of the focus from the centre of curvature is ($A B$ is the reflected ray)

(A) $\frac{2}{\sqrt{3}}$
(B) $\frac{\sqrt{3}}{2}$
(C) $\frac{2}{3}$
(D) $\frac{1}{2}$
15. It is desired to make an achromatic combination of two lenses (L_{1} and L_{2}) made of materials having dispersive powers ω_{1} and $\omega_{2}\left(<\omega_{1}\right)$. If the combination of lenses is converging then
(A) L_{1} is converging
(B) L_{2} is converging
(C) Power of L_{1} is greater than the power of L_{2}
(D) None of these
16. A composition string is made up by joining two strings of different masses per unit length, μ and 4μ. The composite string is under the same tension. A transverse wave pulse: $Y=$ $(6 \mathrm{~mm}) \sin (5 t+40 x)$, where ' t ' is in seconds and ' x ' in meters, is sent along the lighter string towards the joint. The joint is at $x=0$. The equation of the wave pulse reflected from the joint is
(A) $(2 \mathrm{~mm}) \sin (5 t-40 x)$
(B) $(4 m m) \sin (40 x-5 t)$
(C) $(2 m m) \sin (5 t-10 x)$
(D) $-(2 \mathrm{~mm}) \sin (5 t-40 x)$
17. An electron in hydrogen atom after absorbing energy photons can jump between energy states n_{1} and $n_{2}\left(n_{2}>n_{1}\right)$. Then it may return to ground state after emitting six different wavelengths in emission spectrum. The energy of emitted photons is either equal to, less than or greater than the absorbed photons.
(A) $n_{2}=4, n_{1}=3$
(B) $\mathrm{n}_{2}=5, \mathrm{n}_{1}=3$
(C) $\mathrm{n}_{2}=4, \mathrm{n}_{1}=2$
(D) $n_{2}=4, n_{1}=1$
18. In a certain system of units, 1 unit of time is $5 \mathrm{sec}, 1$ unit of mass is 20 kg and unit of length is 10 m . In this system, one unit of power will correspond to
(A) 16 watts
(B) $1 / 16$ watts
(C) 25 watts
(D) none of these
19. In the circuit given, A is a Germanium diode (forward bias voltage is 0.3 volts) while B is Silicon zener diode (forward bias voltage is 0.7 volts). If the switch S is open, then values of I_{A} and I_{B} are given by (here $I_{A} \& I_{B}$ are current flowing through diode A and B)
(A) $3 \mathrm{~mA}, 2 \mathrm{~mA}$
(B) 1 mA
(C) $4 \mathrm{~mA}, 2 \mathrm{~mA}$
(D) $2 \mathrm{~mA}, 1 \mathrm{~mA}$

20. The value of displacement current at $\mathrm{t}=1$ time constant is
(A) $\frac{120}{\mathrm{e}} \mathrm{mA}$
(B) $\frac{120}{\mathrm{e}^{2}} \mathrm{~mA}$
(C) 120 mA
(D) None of these

Section - A
 Numerical based questions

21. A uniform bar of length 6 a and mass 8 m lies on a smooth horizontal surface. Two point masses m and $2 m$ are moving in the same horizontal plane with speed $2 v$ and v respectively, strike the bar and stick to it after collision. Then, the angular velocity of the system about centre of mass of the system just after collision
 is $n\left(\frac{v}{6 a}\right)$. Find n.
22. The electric field strength depends only on the x and y coordinates according to $\overrightarrow{\mathrm{E}}=\mathrm{a}\left(\frac{x \hat{\mathrm{i}}+y \hat{\mathrm{j}}}{\mathrm{x}^{2}+\mathrm{y}^{2}}\right)$, 'a' being a constant. The flux of the vector \vec{E} through a sphere of radius R with its centre at the origin of co-ordinates is $\frac{n}{2} \pi R a$. Find n.
23. A sphere is dropped under gravity through a fluid of viscosity η. If the average acceleration is half of the initial acceleration, the time to attain the terminal velocity is $\frac{2}{n}\left(\frac{\rho r^{2}}{\eta}\right)$. Find $n .(p=$ density of sphere; $r=$ radius $)$.
24. A satellite is seen after every 6 hours over the equator. It is known that it rotates opposite to that of earth's direction. Then the angular velocity of the satellite about the centre of earth will be $\frac{\pi}{n} \mathrm{rad} / \mathrm{hr}$. Find n .
25. Light of wavelength 520 nm passing through a double slit, produces interference pattern of relative intensity versus deflection angle θ as shown in the figure. The separation d between the slits is $\mathrm{n} \times 10^{-2} \mathrm{~mm}$. Find n (nearest integer).

PART - II: CHEMISTRY

Section - A: Single Correct Answer Type

This section contains 20 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.
1.1126. The ratio of the de Brogle wavelength of a proton and an α-particle will be $1: 2$ if their
(A) velocity are in the ratio $1: 8$
(B) velocity are in the ratio 8:1
(C) kinetic energy are in the ratio 1:64
(D) kinetic energy are in the ratio1:256
27. If $\Delta_{\mathrm{f}} \mathrm{H}^{\Theta}$ of $\mathrm{ICl}(\mathrm{g}), \mathrm{Cl}(\mathrm{g})$ and $\mathrm{I}(\mathrm{g})$ are $17.57,121.34$ and $106.96 \mathrm{~J} \mathrm{~mol}^{-1}$, respectively, then bond dissociation energy of $\mathrm{I}-\mathrm{Cl}$ bond is
(A) $35.15 \mathrm{~J} \mathrm{~mol}^{-1}$
(B) $106.69 \mathrm{~J} \mathrm{~mol}^{-1}$
(C) $210.73 \mathrm{~J} \mathrm{~mol}^{-1}$
(D) $420.9 \mathrm{~J} \mathrm{~mol}^{-1}$
28. 20 mL of $\mathrm{M} / 10 \mathrm{CH}_{3} \mathrm{COOH}$ solution is titrated with $\mathrm{M} / 10 \mathrm{NaOH}$ solution. After addition of 16 mL solution of NaOH , what is the pH of the solution? $\left(\mathrm{pK}_{\mathrm{a}}=4.74\right)$
(A) 5.05
(B) 4.15
(C) 4.75
(D) 5.35
29. Given the ionic equivalent conductivities for the following ions:
$\lambda_{\text {eq }}^{0} \mathrm{~K}^{\oplus}=73.5 \mathrm{~cm}^{2} \mathrm{ohm}^{-1} \mathrm{eq}^{-1} ; \lambda_{\text {eq }}^{\circ} \mathrm{Al}^{3+}=149 \mathrm{~cm}^{2} \mathrm{ohm}^{-1} \mathrm{eq}^{-1} ; \& \lambda_{\mathrm{eq}}^{\circ} \mathrm{SO}_{4}^{2-}=85.8 \mathrm{~cm}^{2} \mathrm{ohm}^{-1} \mathrm{eq}^{-1}$ The $\Lambda_{e q}^{\circ}$ for potash alum $\left(\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}\right)$ in $\mathrm{cm}^{2} \mathrm{ohm}^{-1} \mathrm{eq}^{-1}$ is:
(A) 215.92
(B) 348.3
(C) 368.2
(D) 108.52
30. Aluminium hydroxide forms a positively charged sol. Which of the following ionic substances should be most effective in coagulating the sol?
(A) NaCl
(B) CaCl_{2}
(C) $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(D) $\mathrm{K}_{3} \mathrm{PO}_{4}$.
31. The reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$ is first order with respect to $\mathrm{N}_{2} \mathrm{O}_{5}$. Which of the following graphs would yield a straight line?
(A) $\log p_{N_{2} O_{5}}$ vs time with -ve slope
(B) $\left(p_{N_{2} O_{5}}\right)^{-1}$ vs time
(C) $p_{N_{2} O_{5}}$ vs time
(D) $\log p_{N_{2} O_{s}}$ vs time with +ve slope.
32. Which ion has the highest value of spin magnetic moment?
(A) Fe^{2+}
(B) Co^{2+}
(C) Mn^{2+}
(D) Zn^{2+}
33. Reaction of which of the following salt with dil. HCl or dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ produces a gas which acts both as oxidizing as well as reducing agent?
(A) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(B) $\mathrm{Na}_{2} \mathrm{SO}_{3}$
(C) $\mathrm{Na}_{2} \mathrm{~S}$
(D) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
34. Which of the following will have lower pK_{a} value?
(I)

(II)

(III)

(IV)
(D) H_{d}

(A) H_{a}
(B) H_{b}
(C) H_{c}
35.

36. A compound has molecular formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$. It does not reduce Tollens or Fehling's reagent, but gives a crystalline derivative with 2,4-dinitrophenyl hydrazine. With alkali and I_{2}, it gives yellow solid with a medicinal odour. Clemmensen reduction converts it to 2-methylpentane. The structural formula of the compound is most likely
(A) $\mathrm{CH}_{3}-\mathrm{COCH}_{2}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
(B) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CO}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
(C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{CO}-\mathrm{CH}_{2} \mathrm{CH}_{3}$
(D) $\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{CH}-\mathrm{CO}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
37. The monomer of orlon is
(A) Vinyl cyanide
(B) Isoprene
(C) Glycol
(D) Acrolein
38. Amoxillin is a semi-synthetic modification of
(A) Penicillin
(B)Streptomycin
(C) Tetracycline
(D) Chloramphenicol
39. Which of the following has greatest affinity for heamoglobin?
(A) CO
(B) N_{2}
(C) O_{2}
(D) CO_{2}.
40. Which has the most thermal stability?
(A) CaCO_{3}
(B) CaSO_{4}
(C) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
(D) CaSO_{3}
41. Which has maximum tendency to form stable compounds in the highest possible oxidation state of it's group?
(A) Pb
(B) TI
(C) Bi
(D) I
42. The melting point of transition metals mostly depend on
(A) crystal structure
(B) Number of unpaired electrons
(C) ionization energy
(D) atomic size
43. Which of the following compound is least reactive towards NBS/hv?
(A) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$
(B) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
(C) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CHCH}_{3}$
(D) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$
44. The most reactive alkyl halide towards aqueous KOH by $\mathrm{S}_{\mathrm{N}} 1$ path is
(A)

(B)

(C)

(D)

45.

The major product is
(A)

(B)

(C)

(D)

Section - A

Numerical based questions
46. How many species out of the given ones become(s) diamagnetic by gaining one electron?

$$
\mathrm{O}_{2}^{+}, \mathrm{O}_{2}^{-}, \mathrm{O}_{2}^{2-}, \mathrm{O}_{2}^{2+}, \mathrm{N}_{2}^{+}, \mathrm{N}_{2}^{-}, \mathrm{N}_{2}^{2+}, \mathrm{N}_{2}^{2-}, \mathrm{C}_{2}^{2-}, \mathrm{C}_{2}^{-}, \mathrm{C}_{2}^{2+}, \mathrm{C}_{2}^{+}
$$

47.

Above compound is a broad spectrum antibiotic which is known as chloramphenecol. Hydrolysis of chloramphenecol in acid or base medium forms dichloro acetic acid and compound(P) $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$. Periodic oxidation of (P) with HIO_{4} produces three products. One of them is an aromatic compound(Q). How many hydrogen atom(s) is/are present in (Q).
48. The formula of an octahedral complex of chromium(III) is CrCl_{3}. $\left(\mathrm{NH}_{3}\right)_{x}$. Two moles of it is dissolved in one Kg water. The boiling point of the solution is found to be $101.872^{\circ} \mathrm{C}$. if the degree of dissociation of the complex is 0.4 , what is the formula mass of the complex ion in gram unit? [Atomic mass of $\mathrm{Cr}=52$] $\left[\mathrm{K}_{\mathrm{b}}\right.$ of $\mathrm{H}_{2} \mathrm{O}=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$]
49. $2 \mathrm{XY}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{X}_{2}(\mathrm{~s})+3 \mathrm{Y}_{2}(\mathrm{~g})$

If above reaction attains equilibrium at 3 atm and at a certain temperature. What will be the equilibrium constant in atm^{3} unit?
50. The formula of alkyl silicon chloride for different types of silicones are given below.

For linear silicones $\rightarrow \mathrm{Si}(\mathrm{R})_{\mathrm{m}_{1}}(\mathrm{Cl})_{\mathrm{n}_{1}}$
For cross-linked silicones $\rightarrow \mathrm{Si}(\mathrm{R})_{\mathrm{m}_{2}}(\mathrm{Cl})_{\mathrm{n}_{2}}$
The sum of n_{1} and n_{2} is

PART - III: MATHEMATICS

Section - A: Single Correct Answer Type

This section contains $\mathbf{2 0}$ multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.
51. The sum of the distances of any point on the ellipse $3 x^{2}+4 y^{2}=12$ from its directrices is
(A) 4
(B) 8
(C) 12
(D) 16
52. The sum of first n terms of an arithmetic progression is $\mathrm{cn}(\mathrm{n}-1)$, where $\mathrm{c} \neq 0$. The sum of squares of these terms is
(A) $c^{2} n^{2}(n+1)^{2}$
(B) $\frac{2}{3} c^{2} n(n-1)(2 n-1)$
(C) $\frac{2}{3} c^{2} n(n+1)(2 n+1)$
(D) $\frac{1}{3} c^{2} n(n+1)(2 n+1)$
53. The plane passing through the line $4 x-5 y-4 z-1=0=2 x+y+2 z-8$ and the point $(2,1,3)$ is
(A) $32 x-5 y+8 z=83$
(B) $32 x+5 y-8 z=83$
(C) $32 x-5 y+8 z+83=0$
(D) None of these
54. Let $f(x)=\int_{1}^{x} \sqrt{2-t^{2}} d t$. Then the real roots of the equation $x^{2}-f^{\prime}(x)=0$ are
(A) $0, \pm 1$
(B) $\pm \frac{1}{\sqrt{2}}$
(C) $\pm \frac{1}{2}$
(D) ± 1
55. In a bag there are 15 red and 5 white balls. Two balls are to be chosen at random. If it so happens that the first one is red, then what would the probability be that the second one is also red
(A) $7 / 10$
(B) $7 / 17$
(C) $14 / 19$
(D) $15 / 19$
56. The number of solutions of $\log _{4}(x-1)=\log _{2}(x-3)$ is
(A) 3
(B) 1
(C) 2
(D) 0
57. $\mathrm{f}:[1,10] \rightarrow[1,10]$ is a non-decreasing function and $\mathrm{g}:[1,10] \rightarrow[1,10]$ is a nonincreasing function.
Let $h(x)=f(g(x))$ be a continuous function such that $h(1)=1$. Then $h(2)$
(A) lies in (1, 2)
(B) is more than two
(C) is equal to one
(D) is not defined
58. The coefficient of x in the polynomial $\left(x+{ }^{n} C_{0}\right)\left(x+3{ }^{n} C_{1}\right)\left(x+5^{n} C_{2}\right) \ldots \ldots . .(x+(2 n+$ 1) ${ }^{n} C_{n}$) is
(A) n. 2^{n}
(B) $n .2^{n+1}$
(C) $(\mathrm{n}+1) \cdot 2^{\mathrm{n}}$
(D) $n \cdot 2^{n}+1$
59. Consider a rectangle ABCD. Three, four, five and six points are marked respectively on the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA (none of them being the vertex of the rectangle). Number of triangles that can be formed with these points as vertices, so that there is a most one angular point on any side is;
(A) 232
(B) 342
(C) 360
(D) none of these
60. The area (in sq. units) bounded by the curve $y=e^{|x|}, y=e^{-|x|}, x \geq 0$ and $x \leq 5$ is
(A) $e^{5}+e^{-5}+2$
(B) $e^{5}+e^{-5}-2$
(C) $e^{5}-e^{-5}+2$
(D) $e^{5}-e^{-5}-2$
61. Let $\vec{a}=2 \hat{i}+\hat{j}-2 \hat{k} ; \vec{b}=\hat{i}+\hat{j}$ and \vec{c} be a vector such that $\vec{a} \cdot \vec{c}=|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2}$. If angle between $(\vec{a} \times \vec{b})$ and \vec{c} is 30°, then $|(\vec{a} \times \vec{b}) \times \vec{c}|=$
(A) $2 / 3$
(B) $3 / 2$
(C) 2
(D) 3
62. If $\frac{\tan 3 \theta}{\tan \theta}=4$, then $\frac{\sin 3 \theta}{\sin \theta}$ equals $\left(\theta \in\left(0, \frac{\pi}{2}\right)-\left\{\frac{\pi}{6}\right\}\right)$
(A) $\frac{3}{5}$
(B) $\frac{4}{5}$
(C) $\frac{3}{4}$
(D) none of these.
63. The differential equation $y \frac{d y}{d x}=a-x(x \neq a, a \in R)$ represents
(A) a family of circles with centre on y-axis
(B) a family of circles with centre at origin
(C) a family of circles with given radius
(D) a family of circles with centre on x-axis
64. The set of all $x \in R$ such that $\frac{\left(e^{x}-1\right)(\ln (1+x))(3-x)}{\left(x^{2}-4\right)}<0$ is
(A) $(-\infty,-2) \cup(0,2) \cup(3, \infty)$
(B) $(-1,2) \cup(3, \infty)$
(C) $(-2,2) \cup(3, \infty)$
(D) none of these
65. If $0<\alpha<\frac{\pi}{4}$, then the equation $(x-\sin \alpha)(x-\cos \alpha)-2=0$ has
(A) both roots in $(\sin \alpha, \cos \alpha)$
(B) both roots in $(\cos \alpha, \sin \alpha)$
(C) no real root
(D) one root in $(-\infty, \sin \alpha)$ and other in $(\cos \alpha, \infty)$
66. If the parabola $y=f(x)$, having axis parallel to y-axis, touch the line $y=x$ at $(1,1)$; then
(A) $f^{\prime}(0)+2 f(0)=0$
(B) $2 f(0)+f^{\prime}(0)=1$
(C) $2 f(0)-f^{\prime}(0)=1$
(D) $2 f^{\prime}(0)-f(0)=1$
67. The value of $\tan \left[\cos ^{-1}\left(\frac{4}{5}\right)+\tan ^{-1}\left(\frac{2}{3}\right)\right]=$
(A) $6 / 17$
(B) $7 / 16$
(C) $16 / 7$
(D) none of these
68. Let $f: R \rightarrow R, f(x)=\left\{\begin{array}{cc}|x-[x]|, & {[x] \text { is odd }} \\ |x-[x+1]|, & {[x] \text { is even }}\end{array}\right.$, where [.] denotes GIF, then $\int_{-2}^{4} f(x) d x=$
(A) $5 / 2$
(B) $3 / 2$
(C) 5
(D) 3
69. If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4\end{array}\right], I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $A^{-1}=\left[\frac{1}{6}\left(A^{2}+c A+d I\right)\right]$, then the value of c and d are
(A) $-6,-11$
(B) 6,11
(C) $-6,11$
(D) 6, - 11
70. If the truth value of statement ' p ' is True and the truth value of statement ' q ' is false then the truth value of $\sim p \wedge \sim q$ is
(A) True
(B) False
(C) Cannot be determined
(D) None of these

Section - A

Numerical based questions

71. The variance of $6,8,10,12,14$ is
72. The number of complex numbers z satisfying $|z-3-i|=|z-9-i|=|z-3+3 i|(i=\sqrt{-1})$ is
73. The number of values of ' p ' such that circle $x^{2}+y^{2}+2 x+4 y-p=0$ and the coordinate axes have exactly three points in common is
74. The value of $\lim _{x \rightarrow 0} \log _{\tan ^{2} x}\left(\tan ^{2} 2 x\right)$ is
75. If the function $f(x)=\left\{\begin{array}{ll}x^{2}+3 x+p & , \text { if } x \leq 1 \\ q x+2 & , \text { if } x>1\end{array}\right.$ is differentiable at $x=1$ then the value of $q-p$ is

FIITJEE - JEE (Mains)

Batches: $12^{\text {th }}$ Studying \& $1^{\text {th }}$ Pass

Mock Test - I

QP Code:
ANSWER KEY
SECTION - I (PHYSICS)
PART-A

SECTION - II (CHEMISTRY)
 PART-A

26. B
27. D
28. A
29. A
30. B
31. 4
32. 5
33. C
34. A
35. C
36. A
37. B
38. 5

SECTION - III (MATHEMATICS)

PART-A
51. B
55. C
59. B
63. D
67. D
71. 8
75. 2
52. B
56. B
60. B
64. D
68. D
72. 1
53. A
57. C
61. B
65. D
69. C
73. 2
29. A
33. B
37. A
41. D
45. B

PART-C

48. $\quad 172.5$
49. 27

53.	A	54.	D
57.	C	58.	C
61.	B	62.	D
65.	D	66.	B
69.	C	70.	B

74. 1

[^0]: - Do not open this Test Booklet until you are asked to do so.
 - Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.

