FIITJEG - JEE (Main)

Batches: $12^{\text {th }}$ Studying \& 12 ${ }^{\text {th }}$ Pass PHYSICS, CHEMISTRY \& MATHEMATICS Mock Test - II QP Code:

Time Allotted: 3 Hours
Maximum Marks: 300

[^0]
Important Instructions:

A. General Instructions

1. Immediately fill in the particulars on this page of the Test Booklet with Blue / Black Ball Point Pen. Use of pencil is strictly prohibited.
2. The Answer Sheet is kept inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars carefully.
3. The test is of $\mathbf{3}$ hours duration.
4. The Test Booklet consists of 75 questions. The maximum marks are 300 .
5. This question paper contains Three Parts.
6. Part-I is Physics, Part-II is Chemistry and Part-III is Mathematics.
7. Each Part has only one section: Section - A.
8. Rough spaces are provided for rough work inside the question paper. No additional sheets will be provided for rough work.
9. Blank Papers, clip boards, log tables, slide rule, calculator, cellular phones, pagers and electronic devices, in any form, are not allowed.
10. Use Blue / Black Ball Point Pen only for writing particulars / marking responses on Side-1 and Side-2 of the Answer Sheet. Use of pencil is strictly prohibited.
11. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc. except the Admit Card inside the examination hall / room.
12. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator on duty in the Room / Hall. However, the candidates are allowed to take away this Test Booklet with them.
13. Do not fold or make any stray marks on the Answer Sheet.
B. Marking Scheme For All Three Parts.
(i) Section-A (01-20, 26 - 45, 51 - 70) contains 60 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and -1 mark for wrong answer.

Section-A (21-25, 46-50, 71-75) contains 15 Numerical based questions, the answer of which maybe positive or negative numbers or decimals and each question carries $\mathbf{+ 4}$ marks for correct answer. There is no negative marking.

Name of the Candidate (in Capital Letters) : \qquad
Enrolment Number : \qquad
Batch : \qquad Date of Examination : \qquad

PART - I: PHYSICS
 Section - A: Single Correct Answer Type

This section contains $\mathbf{2 0}$ multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

1. A given object takes m times as much time to slide down a 45° rough incline as it takes to slide down a perfectly smooth 45° incline. The coefficient of kinetic friction between the object and the incline is given by
(A) $u_{k}=\frac{1}{1-m^{2}}$
(B) $\mathrm{u}_{\mathrm{k}}=1-\frac{1}{\mathrm{~m}^{2}}$
(C) $u_{k}=\sqrt{1-\frac{1}{\mathrm{~m}^{2}}}$
(D) $u_{k}=\sqrt{\frac{1}{1-m^{2}}}$
2. $10^{-3} \mathrm{~W}$ of 5000 A light is directed on a photoelectric cell. If the current in the cell is $0.16 \mu \mathrm{~A}$, the percentage of incident photons which produce photoelectrons, is
(A) 0.4%
(B) 0.04%
(C) 20%
(D) 10%
3. A particle under the influence of two SHM's moves in XY plane along a path shown in the adjacent figure.
4 statements are given below:
(i) the motion has the same frequency in X and Y direction
(ii) phase difference between X and Y motions is $\frac{\pi}{4}$

(iii) its maximum velocity in Y direction is twice that in X direction
(iv) its total energy due to motion in X direction is four times that due to motion in Y direction.
Choose the correct option related to which statement(s) is/are correct?
(A) only (i) and (iv) are correct
(B) only (ii) and (iii) are correct
(C) only (i) and (ii) are correct
(D) all statements are correct
4. Two metallic rods AB and BC of different materials are joined together at the junction B (see figure). It is observed that if the ends A and C are kept at $100^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ respectively, the temperature of the junction B is $60^{\circ} \mathrm{C}$. there is no loss of heat to the surroundings. The rod BC is replaced by another rod
 $B C^{\prime}$ of the same material and length ($B C=B C^{\prime}$). If the area of cross - section of $B C^{\prime}$ is twice that of $B C$ and the ends A and C^{\prime} are maintained at $100{ }^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ respectively, the temperature of the junction B will be nearly
(A) $29{ }^{\circ} \mathrm{C}$
(B) $33^{\circ} \mathrm{C}$
(C) $60^{\circ} \mathrm{C}$
(D) $43{ }^{\circ} \mathrm{C}$
5. A small charged ball of mass m and charge q is suspended from the highest point of a ring of radius R by means of an insulated cord of negligible mass. The ring is made of a rigid wire of negligible cross - section and lies in a vertical plane. On the ring, there is uniformly distributed charge Q of the same sign as that of q . Determine the length of the cord so as the equilibrium position of the ball lies on the symmetry axis, perpendicular to the plane of the ring.
(A) $\left(\frac{2 k Q q R}{m g}\right)^{1 / 3}$
(B) $\left(\frac{\mathrm{kQqR}}{\mathrm{mg}}\right)^{1 / 3}$
(C) $\left(\frac{\mathrm{kQqR}}{2 m g}\right)^{1 / 3}$
(D) $\left(\frac{\mathrm{kQqR}}{\mathrm{mg}}\right)^{3}$
6. An unpolarised light of intensity $32 \mathrm{~W} / \mathrm{m}^{2}$ passes through three polarisers, such that the transmission axis of last polariser is crossed with that of that of the first.
If the intensity of emergent light is $3 \mathrm{~W} / \mathrm{m}^{2}$, then the angle between the teansmission axes of the first two polarisers is
(A) 30°
(B) 19°
(C) 45°
(D) 90°
7. An organ pipe of length L is open at one end and closed at other end. The air column in the pipe is vibrating in second overtone. The minimum distance from the open end where the pressure amplitude is half of the maximum value is
(A) $\mathrm{L} / 4$
(B) L/8
(C) $\mathrm{L} / 12$
(D) L/15
8. A string of length 2L, obeying Hooke's Law, is stretched so that its extension is L. The speed of the transverse wave travelling on the string is v . If the string is further stretched so that the extension in the string becomes 4L. The speed of transverse wave travelling on the string will be.
(A) $\sqrt{2} v$
(B) v
(C) $2 \sqrt{2} v$
(D) 2 v
9. A hollow object of volume V is immersed in a tank. The object is tied to the bottom of the tank by two wires which make an angle 30° with the horizontal as shown in figure. The object would float if it was set free and one fourth volume is immersed in liquid of density ρ_{0}.The tension in the wire is

(A) $\frac{V \rho_{0} g}{4}$
(B) $\frac{3 V \rho_{o} g}{4}$
(C) $\frac{5 V \rho_{o} g}{4}$
(D) $V \rho_{o} g$
10. Air is blown through a pipe AB at a rate of 15 liters per minute. The cross - sectional area of the broad portion of the pipe is $2 \mathrm{~cm}^{2}$ and that of the narrow portion is $0.5 \mathrm{~cm}^{2}$. The difference in water level h is $\left(p_{\text {air }}=1.32 \mathrm{~kg} / \mathrm{m}^{3}\right)$
(A) 16 mm
(B) 1.6 mm
(C) 10 mm
(D) 3.2 mm

11. A parallel plate capacitor has plate area A and separation d. It is charged to a potential difference V_{0}. The charging battery is disconnected and the plates are pulled apart to three times the initial separation. The work required to separate the plates is
(A) $\frac{3 \varepsilon_{0} \mathrm{AV}_{0}^{2}}{\mathrm{~d}}$
(B) $\frac{\varepsilon_{0} \mathrm{AV}_{0}^{2}}{2 \mathrm{~d}}$
(C) $\frac{\varepsilon_{0} \mathrm{AV}_{0}^{2}}{3 \mathrm{~d}}$
(D) $\frac{\varepsilon_{0} A V_{0}^{2}}{d}$
12. If voltage is applied between terminals 1 and 2 when terminals 3 and 4 are open, the power liberated is P_{1} $=40 \mathrm{~W}$ and when terminals 3 and 4 are connected, the power liberated is $\mathrm{P}_{2}=80 \mathrm{~W}$. If the same source isc onnected to the terminals 3 and 4 , the power liberated in the circuit when terminals 1 and 2 are
 open is $P_{3}=20 \mathrm{~W}$. Determine the power P_{4} consumed in the circuit when the terminals 1 and 2 are connected and the same voltage is applied between the terminals 3 and 4.
(A) 40 W
(B) 80 W
(C) 20 W
(D) zero
13. The magnetic field at a point midway between 2 parallel long wires carrying currents in the same direction
is $10 \mu \mathrm{~T}$. If the direction of the smaller current is reversed, the field becomes $30 \mu \mathrm{~T}$. The ratio of the larger current to the smaller current is
(A) $3: 1$
(B) $2: 1$
(C) $4: 1$
(D) $3: 2$
14. A wire bent as a parabolic curve and placed in the $x-y$ plane. The curve can be described by the equation $x^{2}=6 y$. The wire carries a current $I=2 A$. If a uniform magnetic field $\vec{B}=2 \times 10^{-3} \hat{k}$ Tesla is now applied, force experienced by the wire is nearly (in Newton)?
(A) $-0.05 \hat{j}$
(B) $-0.5 \hat{j}$
(C) $-0.05 \hat{i}$
(D) $-0.5 \hat{k}$

15. An equiconvex lens of refractive index $\frac{3}{2}$ and focal length 10 cm is held with its axis vertical and its lower surface immersed in water $\left(\mu=\frac{4}{3}\right)$, the upper surface being in air. At what distance from the lens, will a vertical beam of parallel light incident on the lens be focused?
(A) 20 cm
(B) 30 cm
(C) 10 cm
(D) 5 cm
16. A parallel beam of sodium light of wavelength $5890 \AA$ is incident on a thin glass plate of refractive index 1.5 such that the angle of refraction in the plate is 60°. The smallest thickness of the plate which will make it dark by reflection is
(A) $5980 \AA$
(B) $7856 \AA$
(C) $1964 \AA$
(D) $3928 \AA$
17. The electron in a hydrogen atom make a transition from an excited state to the ground state. Which of the following statement is true?
(A) Its kinetic energy increases and its potential and total energies decrease
(B) Its kinetic energy decreases, potential energy increases and its total energy remains the same.
(C) Its kinetic and total energies decrease and its potential energy increases.
(D) Its kinetic potential and total energies decreases
18. The radioactive sources A and B of half-lives of 2 hr and 4 hr respectively, initially contain the same number of radioactive atoms. At the end of 2 hours, their rates of disintegration are in the ratio:
(A) $4: 1$
(B) $2: 1$
(C) $\sqrt{2}: 1$
(D) $1: 1$
19. In a Coolidge tube experiment, the minimum wavelength of the continuous X -ray spectrum is equal to 66.3 pm , then
(A) electrons accelerate through a potential difference of 12.75 kV in the Coolidge tube
(B) electrons accelerate through a potential difference of 18.75 kV in the Coolidge tube
(C) de-Broglie wavelength of the electrons reaching the anti-cathode is of the order of 10 $\mu \mathrm{m}$.
(D) de-Broglie wavelength of the electrons reaching the anticathode is $0.01 \AA$.
20. A heavy, uniform metallic bar of mass M is being supported by three rods as shown. Area of cross - section of all the three rods are same and equal to A. the lengths and Young's modulus of the rods are indicated. Assuming that the bar always remains horizontal, find the stress developed in each rod

(A) $\frac{M g}{3 A}$
(B) $\frac{M g}{A}$
(C) $\frac{2 M g}{3 A}$
(D) $\frac{3 M g}{A}$

Section - A

Numerical based questions

21. A point mass is projected from origin with certain speed at a certain angle with horizontal. When the particle is at point $(8 \mathrm{~m}, 6 \mathrm{~m})$, its velocity is perpendicular to direction of initial velocity. If the initial speed of projection is $k \times \pi$, then value of ' k ' is [given $g=\pi^{2} \mathrm{~m} / \mathrm{s}^{2}$]
22. A charged particle is projected in a magnetic field $\vec{B}=(x \hat{i}+4 \hat{j}) \times 10^{-2} \mathrm{~T}$. The acceleration of the particle is found to be $\vec{a}=\left(\frac{8}{3} \hat{i}-2 \hat{j}\right) \mathrm{m} / \mathrm{s}^{2}$. Find the value of x. (Assume gravity free space).
23. An experiment measures quantities a, b, c and x is calculates from $x=a b / c^{3}$. If the maximum percentage error in a, b and c are $1 \%, 1 \%$ and 2% respectively, the maximum percentage error in x will be
24. A small ball moving with a velocity $10 \mathrm{~m} / \mathrm{s}$. horizontally (as shown in figure) strikes a rough horizontal surface having $\mu=$ 0.5 . If the coefficient of restitution is $e=0.4$. Horizontal component of velocity of ball after first impact will be $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

25. In an LCR circuit, the frequency of ac voltage source is adjusted such that $X_{L}=15 \Omega$ and $X_{c}=11 \Omega$. The rms voltage of ac mains is 10 volt. If $R=3 \Omega$, the potential difference across the series combination of L and C is found to be?

PART - II: CHEMISTRY

Section - A: Single Correct Answer Type

This section contains 20 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.
26. The root mean square speed at STP for the gases $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}$ and HBr are in the order
(A) $\mathrm{H}_{2}<\mathrm{N}_{2}<\mathrm{O}_{2}<\mathrm{HBr}$
(B) $\mathrm{HBr}<\mathrm{O}_{2}<\mathrm{N}_{2}<\mathrm{H}_{2}$
(C) $\mathrm{H}_{2}<\mathrm{N}_{2}=\mathrm{O}_{2}<\mathrm{HBr}$
(D) $\mathrm{HBr}<\mathrm{O}_{2}<\mathrm{H}_{2}<\mathrm{N}_{2}$
27. In a closed insulated container a liquid is stirred with a paddle to increase the temperature, which of following is true?
(A) $\Delta \mathrm{E}=\mathrm{W} \neq 0, \mathrm{q}=0$
(B) $\Delta \mathrm{E}=\mathrm{W}=0, \mathrm{q} \neq 0$
(C) $\Delta \mathrm{E}=0, \mathrm{~W}=\mathrm{q} \neq 0$
(D) $\mathrm{W}=0, \Delta \mathrm{E}=\mathrm{q} \neq 0$
28. From the given reactions
$\mathrm{S}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{3}(\mathrm{~g})+2 \mathrm{xkcal}$
$\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{ykcal}$
the heat of formation of SO_{2} is
(A) $(x+y)$
(B) $(x-y)$
(C) $(2 x+y)$
(D) $(2 x-y)$
29. If the concentration of OH^{-}ions in the reaction, $\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s}) \rightleftarrows \mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq})$ is decreased by $1 / 4$ times, then equilibrium concentration of Fe^{3+} will increase by
(A) 8 times
(B) 16 times
(C) 64 times
(D) 4 times
30. Which one of the following salts will have the same value of van't Hoff factor (i) as that of $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$?
(A) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(B) NaCl
(C) $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
(D) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
31. For adsorption of a gas on a solid, the plot of $\log \frac{x}{m}$ vs $\log p$ is linear with slope equal to (n being a whole numbers)
(A) k
(B) $\log \mathrm{k}$
(C) n
(D) $1 / n$
32. Which of the following has $\mathrm{p} \pi-\mathrm{d} \pi$ bonding?
(A) NO_{3}^{-}
(B) SO_{3}^{2-}
(C) BO_{3}^{3-}
(D) CO_{3}^{2-}
33. The correct order of increasing thermal stability of $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MgCO}_{3}, \mathrm{CaCO}_{3}$ and BeCO_{3} is
(A) $\mathrm{BeCO}_{3}<\mathrm{MgCO}_{3}<\mathrm{K}_{2} \mathrm{CO}_{3}<\mathrm{CaCO}_{3}$
(B) $\mathrm{BeCO}_{3}<\mathrm{MgCO}_{3}<\mathrm{CaCO}_{3}<\mathrm{K}_{2} \mathrm{CO}_{3}$
(C) $\mathrm{MgCO}_{3}<\mathrm{BeCO}_{3}<\mathrm{CaCO}_{3}<\mathrm{K}_{2} \mathrm{CO}_{3}$
(D) $\mathrm{K}_{2} \mathrm{CO}_{3}<\mathrm{MgCO}_{3}<\mathrm{CaCO}_{3}<\mathrm{BeCO}_{3}$
34. Name the type of the structure of silicate in which one oxygen atom of $\left[\mathrm{SiO}_{4}\right]^{4-}$ is shared?
(A) Sheet silicate
(B) Pyrosilicate
(C) Three dimensional silicate
(D) Linear chain silicate
35. Which of the following complex ions is diamagnetic in nature?
(A) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(B) $\left[\mathrm{CuCl}_{4}\right]^{2-}$
(C) $\left[\mathrm{CoF}_{6}\right]^{3-}$
(D) $\left[\mathrm{NiCl}_{4}\right]^{2-}$
36. Which set gives yellow ppt.?
(A) $\mathrm{KO}_{3}, \mathrm{Sb}_{2} \mathrm{~S}_{3}, \mathrm{CdS}$
(B) $\mathrm{Sb}_{2} \mathrm{~S}_{3}, \mathrm{CdS}, \mathrm{PbCrO}_{4}$
(C) $\mathrm{PbCrO}_{4}, \mathrm{As}_{2} \mathrm{~S}_{3}, \mathrm{CdS}$
(D) $\mathrm{SnS}_{2}, \mathrm{As}_{2} \mathrm{~S}_{3}, \mathrm{PbCrO}_{4}, \mathrm{PbO}$
37. Which of the following pair of metals are purified by van-Arkel method?
(A) $\mathrm{Zr} \& \mathrm{Ti}$
(B) $\mathrm{Ag} \& \mathrm{Au}$
(C) $\mathrm{Ni} \& \mathrm{Fe}$
(D) Ga \& In
38. The correct order of decreasing acidic strength of trichloroacetic acid (A), trifluoroacetic acid (B), acetic acid (C), formic acid (D) is
(A) B $>$ A $>$ D $>$ C
(B) B $>$ D $>$ C $>$ A
(C) A $>$ B $>$ C $>$ D
(D) A $>$ C $>$ B $>$ D
39. Which alkene on ozonolysis gives $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO} \& \mathrm{CH}_{3} \mathrm{CCH}_{3}$?
(A)

(B)

(C)

(D)

40. 2-bromopentane is heated with potassium ethoxide in ethanol. The major product obtained is
(A) 2-ethoxypentane
(B) pentene - 1
(C) trans-pentene - 2
(D) cis-pentene-2
41. In the following reaction

B
Minor Product

The major product A is
(A)

(B)

(C)

(D)

42. Aldol condensation will not take place in
(A) HCHO
(B) $\mathrm{CH}_{3} \mathrm{CHO}$
(C) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
43. Aniline in a set of reactions yielded a product

The structure of the product D would be
(A) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(B) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCH}_{2} \mathrm{CH}_{3}$
(C) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHOH}$
(D) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$
44. Nylon-6,6 is a polyamide obtained by the reaction of
(A) $\mathrm{COOH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}-$ (p)
(B) $\mathrm{COOH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}+\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}$
(C) $\mathrm{COOH}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COOH}+\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}_{2}$
(D) $\mathrm{COOHC}_{6} \mathrm{H}_{4} \mathrm{COOH}-(\mathrm{p})+\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}$
45. Which one of the following is employed as a tranquiliser?
(A) Equanil
(B) Naproxen
(C) Tetracycline
(D) Chlorpheninamine

Section - A

Numerical based questions

46. The number of oxygen atoms in 4.4 g of CO_{2} is $\mathrm{x} \times 10^{23}$. Find the value of x .
47. In the fluorite structure, the coordination number of Ca^{2+} ions is
48. Reduction potential for the following half/cell reaction
$\mathrm{Zn} \longrightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-},\left(\mathrm{E}_{\left(\mathrm{Zn}^{2+} / \mathrm{Zn}\right)}^{\circ}=-0.76 \mathrm{~V}\right), \mathrm{Fe} \longrightarrow \mathrm{Fe}^{2+}+2 \mathrm{e}^{-},\left(\mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{0}=-0.44 \mathrm{~V}\right)$.
The standard EMF for the cell reaction $\mathrm{Fe}^{2+}+\mathrm{Zn} \longrightarrow \mathrm{Zn}^{2+}+\mathrm{Fe}$ will be
49. If 60% of a first order reaction was completed in $60 \mathrm{~min}, 50 \%$ of the same reaction would be completed in approximately ($\log 4=0.60, \log 5=0.69$) (in minutes)
50. Number of chiral carbon atoms in $\beta-\mathrm{D}-(+)-$ glucose is

PART - III: MATHEMATICS

Section - A: Single Correct Answer Type

This section contains $\mathbf{2 0}$ multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.
51. Let $A=\{1,2,3,4\}$ and R be a relation in A given by $R=\{(1,1),(2,2),(3,3),(4,4)$, $(1,2),(3,1),(1,3)\}$. Then R is :
(A) Reflexive and transitive only
(B) Transitive and symmetric only
(C) equivalence
(D) reflexive only
52. Area bounded by the curves $y=x \ell n x$ and $y=2 x-2 x^{2}$ is
(A) $\frac{1}{12}$
(B) $\frac{5}{12}$
(C) $\frac{7}{12}$
(D) $\frac{11}{12}$
53. If $\int_{0}^{1} \cot ^{-1}\left(1-x+x^{2}\right) d x=\lambda \int_{0}^{1} \tan ^{-1} x d x$ then ' λ ' is equal to -
(A) 1
(B) 2
(C) 3
(D) 4
54. If $f(x)=\frac{1}{x^{2}-17 x+66}$, then $f\left(\frac{2}{x-2}\right)$ is discontinuous at x is equal to -
(A) $2, \frac{7}{3}, \frac{25}{11}$
(B) $2, \frac{8}{3}, \frac{24}{11}$
(C) $2, \frac{7}{3}, \frac{24}{11}$
(D) None of these
55. If a, b, c, are positive and system of equations $a x+b y+c z=0, b x+c y+a z=0$, $c x+a y+b z=0$ has non trival solutions. Then roots of the equation $a t^{2}+b t+c=0$ are
(A) real and opposite in sign
(B) both positive
(C) at least one positive
(D) imaginary
56. If the centroid of a tetrahedron OABC where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are given by $(\mathrm{a}, 2,3),(1, \mathrm{~b}, 2),(2,1, \mathrm{c})$ respectively be $(1,2,-1)$ then the distance of $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ from the the origin O is
(A) $\sqrt{107}$
(B) $\sqrt{14}$
(C) $\frac{\sqrt{107}}{14}$
(D) $\frac{107}{\sqrt{14}}$
57. Let $P(x) P(x)=a_{0}+a_{1} x^{2}+a_{2} x^{4}+\ldots .+a_{n} x^{2 n}$ be a polynomial in a real variable x with $0<a_{0}<a_{1}<a_{2}<\ldots . . a_{n}$. The function $P(x)$ has
(A) neither a maxima nor minima
(B) only one maxima
(C) only one maxima \& minima
(D) None of these
58. If $\vec{a}^{\prime}=\hat{i}+\hat{j}, \overrightarrow{b^{\prime}}=\hat{i}-\hat{j}+2 \hat{k} \& \vec{c}^{\prime}=2 \hat{i}+\hat{j}+\hat{k}$. The altitude of the parallelepiped formed by the vectors $\vec{a}, \vec{b}, \vec{c}$ having base formed by
$\overrightarrow{\mathrm{b}} \& \overrightarrow{\mathrm{c}}$ is ($\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}$ and ($\overrightarrow{\mathrm{a}},{ }^{\prime} \overrightarrow{\mathrm{b}},{ }_{\mathrm{c}}$ ' are reciprocal systems of vectors)
(A) 1
(B) $\frac{3 \sqrt{2}}{2}$
(C) $\frac{1}{\sqrt{6}}$
(D) $\frac{1}{\sqrt{2}}$
59. The line $2 x-y+1=0$ is a tangent to the circle at the point $(2,5)$ and the centre of the circle lies on $x-2 y=4$. Then radius of the circle is
(A) $5 \sqrt{3}$
(B) $3 \sqrt{5}$
(C) $2 \sqrt{5}$
(D) $5 \sqrt{2}$
60. On the ellipse $4 x^{2}+9 y^{2}=1$, the point at which the tangent is parallel to the line $8 x=9 y$ is
(A) $\left(\frac{2}{5}, \frac{1}{5}\right)$
(B) $\left(-\frac{2}{5}, \frac{1}{5}\right)$
(C) $\left(-\frac{2}{5},-\frac{1}{5}\right)$
(D) $\left(\frac{2}{5}, \frac{2}{5}\right)$
61. $A(-6,0), B(0,6)$ and $C(-7,7)$ are the vertices of $\triangle A B C$. The incircle of the triangle has the equation
(A) $x^{2}+y^{2}-9 x-9 y+36=0$
(B) $x^{2}+y^{2}+9 x-9 y+36=0$
(C) $x^{2}+y^{2}+9 x+9 y-39=0$
(D) $x^{2}+y^{2}+18 x-18 y+36=0$
62. If two points P and Q on $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ such that $C P$ is perpendicular to $C Q$ where $a<b$ $(\mathrm{C}=\mathrm{Centre})$. Then $\frac{1}{\mathrm{CP}^{2}}+\frac{1}{\mathrm{CQ}^{2}}$ is -
(A) $\frac{\mathrm{b}^{2}-\mathrm{a}^{2}}{2 \mathrm{ab}}$
(B) $\frac{1}{a^{2}}+\frac{1}{b^{2}}$
(C) $\frac{2 a b}{b^{2}-a^{2}}$
(D) $\frac{1}{a^{2}}-\frac{1}{b^{2}}$
63. If the roots of the equation $a x^{2}-b x+c=0$ are α, β then the roots of the equations $b^{2} c x^{2}-a b^{2} x+a^{3}=0$ are -
(A) $\frac{1}{\alpha^{2}+\alpha \beta}, \frac{1}{\beta^{3}+\alpha \beta}$
(B) $\frac{1}{\alpha^{2}+\alpha \beta}, \frac{1}{\beta^{2}+\alpha \beta}$
(C) $\frac{1}{\alpha^{4}+\alpha \beta}, \frac{1}{\beta^{4}+\alpha \beta}$
(D) None of these
64. The value of ${ }^{20} \mathrm{C}_{0}+{ }^{20} \mathrm{C}_{1}+{ }^{20} \mathrm{C}_{2}+{ }^{20} \mathrm{C}_{3}+{ }^{20} \mathrm{C}_{4}+{ }^{12} \mathrm{C}_{12}+{ }^{20} \mathrm{C}_{13}+{ }^{20} \mathrm{C}_{14}+{ }^{20} \mathrm{C}_{15}$ equal to -
(A) $2^{19}-\frac{\left({ }^{20} \mathrm{C}_{10}+{ }^{20} \mathrm{C}_{9}\right)}{2}$
(B) $2^{19}-\frac{\left({ }^{20} \mathrm{C}_{10}+2^{20} \mathrm{C}_{9}\right)}{2}$
(C) $2^{19}-\frac{{ }^{20} \mathrm{C}_{10}}{2}$
(D) None of these
65. Two players P_{1} and P_{2} play a series of $2 n$ games. Each game can result in either a win or a loss for P_{1}. The total number of ways in which P_{1} can win the series of these games in equal to -
(A) $\frac{1}{2}\left(2^{2 n}-^{2 n} C_{n}\right)$
(B) $\frac{1}{2}\left(2^{2 n}-2^{2 n} C_{n}\right)$
(C) $\frac{1}{2}\left(2^{n}-{ }^{2 n} C_{n}\right)$
(D) None of these
66. If $|z|=1, z \neq \pm 1$ then all the values of $\frac{z}{1-z^{2}}$ lie on
(A) a line not passing through the origin
(B) $|z|=\sqrt{2}$
(C) the x-axis
(D) the y-axis
67. Statement -1 : the equation $x^{2}+(2 m+1) x+(2 n+1)=0$ where m and n are integers cannot have any rational roots.
Statement -2 :The quantity $(2 m+1)^{2}-4(2 n+1)$ where m, n, \in I can never be a perfect square.
(A) Statement -1 is true, Statement -2 is True, statement -2 is a correct explanation for statement 1 .
(B) Statement -1 is True, Statement -2 is True, Statement -2 is NOT a correct explanation for statement - 1
(C) Statement -1 is True, Statement -2 is False]
(D) Statement -1 is False, Statement -2 is True
68. The angle between the tangents to the parabola $y^{2}=4 a x$ at the points where it intersects with the line $x-y-a=0$, is
(A) $\frac{\pi}{3}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{6}$
(D) $\frac{\pi}{2}$
69. If $p \Rightarrow(\sim p \vee q)$ is false, the truth values of p \& q are respectively :
(A) F, T
(B) F, F
(C) T, T
(D) T.F
70. The one which is the measure of central tendency is -
(A) Mode
(B) Mean deviation
(C) standard deviation
(D) Coefficient of variance

Section - A Numerical based questions

71. $L=\lim _{x \rightarrow 3}([x-3]+[3-x]-x)$ where [.] denotes the greatest integer function then $L+10$ equals
72. the greatest value of $f(x)=(x+1)^{1 / 3}-(x-1)^{1 / 3}$ on $[0,1]$ is-
73. If $f(x)=\frac{k \sin x+2 \cos x}{\sin x+\cos x}$ is strictly increasing for all x then smallest integral value of k is
74. If $f(x)=x^{2}+x^{5}+2 x^{3}+8 x$, then find number of real roots of $f(x)=0$
75. If number of irrational terms in expansion of $\left(5^{1 / 6}+2^{1 / 8}\right)^{100}$ is N then $\frac{3+\mathrm{N}}{20}$

FIITJEE - JEE (Mains)

Batches: $12^{\text {th }}$ Studying \& $12^{\text {th }}$ Pass

Mock Test - II
QP Code:
ANSWER KEY
SECTION - I (PHYSICS)
PART-A

1.	B	2.	B	3.	A	4.	D
5.	B	6.	A	7.	D	8.	C
9.	B	10.	B	11.	D	12.	A
13.	B	14.	A	15.	A	16.	D
17.	A	18.	C	19.	B	20.	A
PART-C							
21.	4	22.	3	23.	8	24.	3
25.	8						
SECTION - II (CHEMISTRY) PART-A							
26.	B	27.	A	28.	D	29.	C
30.	A	31.	D	32.	B	33.	B
34.	B	35.	A	36.	C	37.	A
38.	A	39.	A	40.	C	41.	A
42.	A	43.	D	44.	B	45.	A
PART-C							
46.	1.2	47.	8	48.	0.32	49.	45
50.	5						

SECTION - III (MATHEMATICS)
 PART-A

51. D
52. D
53. B
54. B
55. A
56. 6
57. 5

[^0]: - Do not open this Test Booklet until you are asked to do so.
 - Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.

