Areas Related to Circles

- Area of sector:

- Area of quadrant:

Area of a quadrant of a circle with radius $r=\frac{\frac{\boldsymbol{\pi r}}{} \mathbf{F}^{2}}{4} \quad\left[\boldsymbol{\theta}=\mathbf{9 0 ^ { \circ }} \Rightarrow \frac{\boldsymbol{\theta}}{\mathbf{3 6 0}}=\frac{\mathbf{9 0}}{\mathbf{3 6 0}}=\frac{1}{4}\right]$

- Area of a semicircle $=\frac{180^{\circ}}{360^{\circ}} \times \pi r^{2}=\frac{1}{2} \pi r^{2}$
- Length of an arc:

Length of an arc of a sector of angle $\boldsymbol{\theta}=\frac{\boldsymbol{\theta}}{\mathbf{3 6 0}} \times \mathbf{2 \pi}$, where r is the radius of the circle

Perimeter of a Sector $=1+2 r$

- Area of the segment of a circle

Area of segment APB
$=$ Area of sectir OAPB - Area of $\triangle \mathrm{OAB}$
$=\frac{\theta}{360} \times \pi r^{2}-\operatorname{arcea}$ of AOAB

Example:

In the given figure, the radius of the circle is 14 cm , and $Đ P O Q=60^{\circ}$. Find the area of the segment P XQ.

Solution:

Area of segment $P X Q=$ Area of sedmr OPXQ - Area of $\triangle O P Q$
Area of setin OPXQ
$=\frac{60^{\circ}}{360^{\circ}} \times \pi \times 14 \times 14 \mathrm{~cm}^{2} \quad\left[\right.$ Area of secter of angle θ and radius $r=\frac{\theta}{360} \times \pi r^{2}$]
$=\frac{1}{6} \times \frac{22}{7} \times 14 \times 14 \mathrm{~cm}^{2}$
$=\frac{22}{3} \times 14=\frac{308}{3} \mathrm{~cm}^{2}$
In $\triangle O P Q$ we have
$\mathrm{OP}=\mathrm{OQ} \quad$ [radi of the same circle]
$\Rightarrow \angle \mathrm{OPQ}=\angle \mathrm{OQP}=\frac{1}{2}\left(180-60^{\circ}\right)=60^{\circ}$
$\triangle O P Q$ is an equilateral triangle
Area of $\triangle O P Q=\frac{\sqrt{3}}{4} \times(14)^{2} \mathrm{~cm}^{2}$

$$
=49 \sqrt{3} \mathrm{~cm}^{2}
$$

\therefore From (1), Area of segment $P X Q=\left(\frac{308}{3}-49 \sqrt{3}\right) \mathrm{cm}^{2}$

- Areas of Combination of Plane Figures

Example:
In the given figure A, B, and C are points on the circle with centre O , such that
$\angle \mathrm{AOB}=\angle \mathrm{AOC}=\angle \mathrm{BOC}$. If the radius of the circle is 28 cm . Find the area of the shaded region.

Solution:

Area of the shaded region $=$ Area of the circle - Area of $\triangle \mathrm{ABC}$
Area of the circle $=\pi \times(\text { Radius })^{2}=\frac{22}{7} \times 28 \times 28 \mathrm{~cm}^{2}=22 \times 4 \times 28 \mathrm{~cm}^{2}$

Since $\angle A O B=\angle B O C=\angle A O C$
$\angle \mathrm{AOB}+\angle \mathrm{BOC}+\angle \mathrm{AOC}=360^{\circ}$
$\Rightarrow \angle \mathrm{AOB}=\angle \mathrm{BOC}=\angle \mathrm{AOC}=\frac{1}{3} \times 360^{\circ}=120^{\circ}$
It can be easily shown that
$\triangle \mathrm{AOB} \cong \triangle A O C \cong \triangle B O C$
$\Rightarrow \mathbf{A B}=\mathbf{B C}=\mathbf{C A}$
$\therefore \triangle A B C$ is an equilateral triangle
Draw OP $\perp \mathbf{A B}$
Then, in $\triangle O A P$ and $\triangle O B P$, we have
$\angle \mathrm{OPA}=\angle \mathrm{OPB}=90^{\circ}$
$\mathrm{OA}=\mathbf{O B}$
$\mathbf{O P}=\mathbf{O P}$
$\therefore \triangle O A P \cong \triangle O B P$
$\Rightarrow \angle \mathbf{A O P}=\angle \mathbf{B O P}$
$\therefore \angle \mathrm{BOP}=\frac{1}{2} \times 120^{\circ}=60^{\circ}$
$\mathrm{Now}, \frac{\mathrm{PB}}{\mathrm{OB}}=\operatorname{Sin} 60^{\circ}=\frac{\sqrt{3}}{2}$
$\therefore P B=\frac{\sqrt{3}}{2} \times 28=14 \sqrt{3}$
$\therefore \mathbf{A B}=\mathbf{A P}+\mathbf{P B}=2 \mathbf{P B}=2 \times 14 \sqrt{3}=28 \sqrt{3} \mathrm{~cm}$
\therefore Area of $\triangle \mathrm{ABC}=\frac{\sqrt{3}}{4} \times(\text { side })^{2}=\frac{\sqrt{3}}{4} \times 28 \sqrt{3} \times 28 \sqrt{3} \mathrm{~cm}^{2}=7 \times 28 \times 3 \sqrt{3} \mathrm{~cm}^{2}$
Thus, area of the shaded region

$$
\begin{aligned}
& =(22 \times 4 \times 28-7 \times 28 \times 3 \sqrt{3}) \mathrm{cm}^{2} \\
& =28(88-21 \sqrt{3}) \mathrm{cm}^{2}
\end{aligned}
$$

