2. Atomic Structure

1. No. of subshells in main shell $=\mathbf{n}$
2. Total no.of orbitals in main shell $=(\mathbf{n})^{2}$
3. Total no. of orbitals in subshell $-2 l+1$
4. Total no. of electrons in main shell $-2 \mathbf{n}^{2}$
5. Total no. of electrons in sub shell $=2(2 l+1)$
6. No. of radial or spherical nodes $=\mathbf{n}-\boldsymbol{l} \mathbf{- 1}$
7. Nodal plane :

It is a plane passing through nucleus where probability of finding of electrons is zero.
No. of nodel plane $=l$
8. Angular momentum of electron, $\mathrm{mvr}=\frac{\mathrm{nh}}{2 \pi}$
9. Orbital angular momentum of electron.
$\mu=\sqrt{\ell(\ell+1)} \frac{\mathrm{h}}{2 \pi}$,
$\boldsymbol{\mu}=\sqrt{\ell(\ell+1)} \hbar$
10. Magnetic moment $=\sqrt{n(n+2)}$ B.M.

Where $\mathbf{n}=$ no. of unpaired electrons.
11. Spin angular momentum $=\sqrt{\mathbf{S (S + 1)}} \frac{h}{2 \pi}$
12. Maximum no. of lines produced when electron falls to ground level, $=\frac{\mathbf{n (n}-1)}{2}$
13. When electron returns from n_{2} to n_{1} state, maximum no. of lines produced
$=\frac{\left(n_{2}-n_{1}\right)\left(n_{2}-n_{1}+1\right)}{2}$
$>\quad \overline{\mathrm{v}}=\frac{1}{\lambda}=\mathrm{RZ}^{2}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]$,
$\left[\mathrm{R}=1.0968 \times 10^{7} \mathrm{~m}^{-1}\right]$;
$\mathrm{E}=\mathbf{h v}=\frac{\mathrm{hc}}{\lambda}, \lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m} \times \text { K.E. }}}$
$>$ No. of spectral lines produced when an electron drops from $\mathrm{n}^{\text {th }}$ level to ground level $=\frac{\mathrm{n}(\mathrm{n}-1)}{2}$
$>$ Heisenberg's Uncertainty Principle $=(\Delta x)(\Delta \mathrm{p})$ $\geq \mathrm{h} / 4 \pi$
$>$ Nodes $(\mathrm{n}-1)=$ total nodes, $l=$ angular nodes, ($\mathrm{n}-\mathrm{l}-1$) = Radial nodes
$>$ Orbital angular momentum :
$\sqrt{\ell(\ell+\mathbf{1})} \frac{\mathbf{h}}{2 \pi}=\sqrt{\ell(\ell+\mathbf{1}) \mathbf{h}}$

14. Bohr's model formulae

$>$ Radius of nth shell

$$
r_{n}=0.529 \times \frac{n^{2}}{Z} \AA \Rightarrow r \propto \frac{n^{2}}{Z}
$$

> Velocity of nth shell
$\mathrm{v}_{\mathrm{n}}=\frac{\mathrm{Z}}{\mathrm{n}} \times 2.185 \times 10^{8} \mathrm{~cm} / \mathrm{s} \Rightarrow \mathrm{V} \propto \frac{\mathrm{Z}}{\mathrm{n}}$
$>$ No of revolutions made by nth shell $v=\frac{Z^{2}}{n^{3}} s^{-1}$
$\Rightarrow V \propto \frac{\mathrm{n}^{2}}{\mathrm{n}^{3}}$
$>$ No. of wave made by e^{-}in nth shell
$\mathrm{T}_{\mathrm{n}}=1.5 \times 10^{-16} \times \frac{\mathrm{n}^{3}}{\mathrm{Z}^{2}} \mathrm{~s} \Rightarrow \mathrm{v} \propto \frac{\mathrm{n}^{3}}{\mathrm{Z}^{2}}$
$\mathrm{IE}=\mathrm{E}_{\infty}-\mathrm{E}_{1}$
$\mathrm{IE}=-\mathrm{E}_{1}$
$\mathrm{IE}=0-\mathrm{E}_{1}=-\mathrm{E}_{1}$
$>\mathrm{IE}_{\mathrm{H} \text {-like atom }} \times \mathrm{Z}^{2}=\mathrm{I} \cdot \mathrm{E}_{\mathrm{H} \mathrm{atom}} \times \mathrm{Z}^{2}$
$K E=13.6 \times \frac{\mathrm{Z}^{2}}{\mathrm{n}^{2}} \mathrm{eV} /$ atom
P.E. $=-27.2 \times \frac{\mathrm{Z}^{2}}{\mathrm{n}^{2}} \mathrm{eV} /$ atom

IE and TE $=-13.6 \times \frac{Z^{2}}{n^{2}} \mathrm{eV} /$ atom
$K E$ and $T E=\frac{K E}{T E}=\frac{Z e^{2}}{2 r} \times-\frac{2 r}{Z e^{2}}=-1$
Angular momentum in orbit $\mathbf{m v r}=\frac{\mathrm{nh}}{2 \pi}$

