5. Chemical Equilibrium

$>\mathrm{K}_{\mathrm{C}}=\frac{[\mathrm{B}]}{[\mathrm{A}]}=\mathrm{mol} \mathrm{L}^{-1}$
$>\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{B}}}{\mathrm{P}_{\mathrm{A}}}=$ Partial Pressure
$>\mathrm{K}_{\mathrm{x}}=\frac{\mathrm{X}_{\mathrm{B}}}{\mathrm{X}_{\mathrm{A}}}=$ mole fraction
$>\mathrm{K}_{\mathrm{P}}=\mathrm{K}_{\mathrm{C}}(\mathrm{RT})^{\Delta \mathrm{ng}}$ where $\Delta \mathrm{n}_{\mathrm{g}}=\mathrm{n}_{\mathrm{p}}-\mathrm{n}_{\mathrm{R}}$
$>$ Predicting the extent of reaction :

- $K_{C}>10^{3}$ [Forward reaction is favoured.]
- $\mathrm{K}_{\mathrm{C}}<10^{-3}$ [Reverse reaction is favoured.]
- $10^{-3}<\mathrm{K}_{\mathrm{C}}<1 \mathbf{0}^{\mathbf{3}}$ [Both reactants and products are present in equilibrium]
$>$ Free Energy Charge ($\Delta \mathrm{G}$)
a) If $\Delta \mathrm{G}=0$ then reversible reaction would be in equilibrium, $\mathrm{K}_{\mathrm{C}}=1$
b) If $\Delta G=(+)$ ve then equilibrium will be displaced in backward direction; $\mathrm{K}_{\mathrm{C}}<1$
c) If $\Delta G=(-)$ ve then equalibrium will shift in forward direction;
$\mathrm{K}_{\mathrm{C}}>1$
(a) K_{C} unit $\rightarrow(\text { moles } / \text { lit })^{\Delta n}$
(b) K_{P} unit $\rightarrow(\mathrm{atm})^{\Delta \mathrm{n}}$
$>$ Reaction Quotient and Equilibrium Constant Consider the following reversible reaction
$\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$
$>\quad \therefore \mathrm{Q}_{\mathrm{C}}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}$
Case I: If $Q_{C}<K_{C}$ then :
[Reactants] $>$ [Products] then the system is not at equilibrium
Case II : If $\mathbf{Q}_{\mathrm{C}}=\mathrm{K}_{\mathrm{c}}$ then :
The system is at equilibrium.
Case- III : If $\mathbf{Q}_{\mathrm{C}}>\mathrm{K}_{\mathrm{C}}$ then :
[Products] > [Reactants]
The system is not at equilibrium.
> $\Delta \mathrm{G}$ or a reaction under any set of conditions is related to its value under standard conditions, i.e. $\Delta \mathrm{G}^{\circ}$ by the equation

```
\DeltaG=\DeltaG'+2.303 RT log Q
```

> Under equlibrium condtions, for same number of moles of reactants and products

$$
\mathbf{Q}=\mathrm{K}_{\mathrm{P}}=\mathrm{K}_{\mathrm{C}}=\mathrm{K} \text { and } \Delta \mathrm{G}=\mathbf{0}
$$

$\therefore \quad \Delta \mathrm{G}^{\circ}=-2.303 \mathrm{RT} \log \mathrm{K}$
> We have replaced $\mathbf{K}_{\mathbf{P}}$ by \mathbf{K} called thermodyanmic equilibrium constant

Significance of ΔG°

Significance of $\Delta \mathrm{G}^{\circ}$ can be explained from the following points
(i) If $\Delta G^{\circ}<0, \log K>0, \Rightarrow K>1$

Hence, reaction is spontaneas in forward direction.
(ii) Hence $\Delta \mathrm{G}^{\circ}<0, \log \mathrm{~K}>0, \Rightarrow \mathrm{~K}<1$

Hence, reaction is non-spontaneous or a reaction proceeds in the forward direction to such a small proceeds in the forward direction to such a small extent that a very small amount of the product is formed.
(iii) If $\Delta G^{\circ}=0, \log K=0, \Rightarrow K=1$
hence, it represents equilibrium.
(iv) If ΔG° is large negative number,
$K \gg 1$, the forward reaction is nearly complete.
(v) If $\Delta \mathbf{G}^{\circ}$ is a very small positive number,
$K \ll 1$, then reverse reaction is nearly complete.
> Mole of Representation of Reversible reaction.
i. $\quad \mathbf{N}_{\mathbf{2}}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3} \mathrm{~K}_{\mathrm{C}_{1}}$

$$
\mathrm{K}_{\mathrm{C}_{1}}=\frac{1}{\mathrm{~K}_{\mathrm{C}_{2}}}
$$

$$
\mathrm{K}_{\mathrm{C}_{1}}=\frac{1}{\mathrm{~K}_{\mathrm{C}_{3}}^{2}}
$$

ii. $2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{~N}_{2}+3 \mathrm{H}_{2} \mathrm{~K}_{\mathrm{C}_{2}}$

$$
\mathrm{K}_{\mathrm{C}_{1}}=\frac{1}{\mathrm{~K}_{\mathrm{C}_{4}}^{2}}
$$

$$
\mathbf{K}_{\mathrm{C}_{1}^{2}}=\mathbf{K}_{\mathrm{C}_{5}}
$$

iii. $\frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2} \rightleftharpoons \mathrm{NH}_{3} \mathrm{~K}_{\mathrm{C}_{3}}$

$$
\mathrm{K}_{\mathrm{C}_{2}}=\frac{1}{\mathrm{~K}_{\mathrm{C}_{3}}^{2}} \quad \mathbf{K}_{\mathrm{C}_{3}}=\frac{1}{\mathrm{~K}_{\mathrm{C}_{4}}}
$$

iv. $\mathrm{NH}_{3} \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2} \mathrm{~K}_{\mathrm{C}_{4}}$

$$
\mathbf{K}_{\mathrm{C}_{4}^{4}}=\frac{1}{\mathrm{~K}_{\mathrm{C}_{5}}}
$$

$$
\mathrm{K}_{\mathrm{C}_{2}}=\mathrm{K}_{\mathrm{C}_{4}^{2}}
$$

iv. $\quad 2 \mathrm{~N}_{2}+6 \mathrm{H}_{2} \rightleftharpoons 4 \mathrm{NH}_{3} \mathrm{~K}_{\mathrm{C}_{5}}$

Le-Chatelier's principle

i. Increase of reactant conc. (Shift reaction forward)
ii. Decrease of reactant conc. (Shift reaction backward)
iii. Increase of pressure (from more moles to less moles)
iv. Decrease of pressure (from less moles to more moles)
v. For exothermic reaction decrease in temp. (Shift forward)
vi. For endothermic increase in temp. (Shift forward)
$>$ Effect of Temperature on Equilibrium Constant

According to Von't Hoff Equation,
$\mathbf{k}=\mathrm{Ae}^{-\mathrm{AH} / \mathrm{RT}}$
Where, $\mathrm{K}=$ rate constant, $\mathrm{E}_{\mathrm{a}}=$ activation energy, $\mathrm{R}=$ gas constant, $\mathrm{T}=$ absolute temperature and $\mathrm{e}=$ exponential constant.
$\log \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=-\frac{\Delta \mathrm{H}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right]$
where, $\mathrm{T}_{2}>\mathrm{T}_{1}$
First case : When $\Delta \mathrm{H}=0 ; \mathrm{K}_{2}=\mathrm{K}_{1}$.
Second case : When $\Delta \mathrm{H}=+\mathrm{Ve} ; \mathrm{K}_{2}>\mathrm{K}_{1}$
Thirds Case :When $\Delta \mathrm{H}=-\mathrm{ve} ; \mathrm{K}_{1}>\mathrm{K}_{2}$

a) Endothermic reaction (Plots of logK versus T)

b) Exothermic reaction

