10. Electrochemistry

➢ Faraday's 1st Law

The mass of substance deposited at an electrode is directly proportional to charge pass through it.

Mass \propto Charge (Q)

 $W \propto Q$

W = ZQ (Z = electrochemical equivalent)

(Q = Charge in Coulombs)

W = Z I t

I = current in Ampere

t = time in seconds

W = Z Q (Q = 1C) Remember

then W = Z

1 F charge deposits

1 g eq of any substance

So
$$W = \frac{E I t}{F}$$
 sec of substance

= No. of faradays

Faraday's 2nd Law

If equal electricity is passed through two or more cells connected in series then the mass of substance deposited is directly proportional to equivalent mass

 $W_1 \propto E_1$ $W_2 \propto E_2$ $\frac{W_1}{E_1} = \frac{W_2}{E_2}$

 $\blacktriangleright \quad \text{Degree of dissociation : } \alpha = \frac{\lambda_{eq}}{\lambda_{eq}^0}$

$$\blacktriangleright \quad \text{Kohlraush's law}: \ \Lambda_m^0 = x \lambda_A^0 + y \lambda_B^0$$

> Under standard conditions (E°) $E_{cell}^{\circ} = E_{RP}^{\circ}(cathode) - E_{RP}^{\circ}(anode)$ (or)

 $E_{cell}^{o} = E_{OP}^{o}(anode) - E_{OP}^{o}(cathode) (or)$ $E_{cell}^{o} = E_{OP}^{o}(anode) + E_{RP}^{o}(cathode)$

Nernst Equation

 $E = E^{\circ} - \frac{0.0591}{n} \log_{10} \frac{[Products]}{[Reactants]}$

&
$$\mathbf{E}_{Cell}^{\circ} = \mathbf{E}_{right}^{\circ} + \mathbf{E}_{left}^{\circ} \& \mathbf{K}_{eq.} = antilog \left[\frac{n \mathbf{E}^{\circ}}{0.0591} \right]$$

$$\Delta G = - nFE_{cell} \&$$

$$\Delta G^{\circ} = - nFE^{\circ}cell = -2.303 RT \log K_{c}$$

&
$$W_{max}$$
 = + nFE° & $\Delta G = \Delta H + T \left(\frac{\partial \Delta G}{\partial T}\right)_{P}$

Application of Nernst Equation
 To find the E_{cell} of concentration cells

$$\mathbf{E}_{\text{cell}} = \frac{0.059}{n} \log_{10} \left(\frac{\mathbf{C}_2}{\mathbf{C}_1} \right) (\text{for conc}^n \text{ cell } \mathbf{E}_{\text{cell}}^o = \mathbf{0})$$

To find the pH of concentration cell For the measurement of Eq. constant (**K**)

$$E_{cell}^0 = \frac{0.059}{n} \log_{10} K_C$$

Calculation of pH of an electrolyte by using a calomel electrode :

$$pH = \frac{E_{cell} - 0.2415}{0.0591}$$

> Thermodynamic efficiency of fuel cells :

$$\eta = \frac{-\Delta G}{\Delta H} = \frac{-nFE_{cell}^{\circ}}{\Delta H}$$
 For $H_2 - O_2$ fuel cells it is 95%.

$$\blacktriangleright$$
 P = K_H.X

Summing-up the Units of Different Quantities				
S.N. Physical	Symbol	Expression	Commonly used Units	SI Units
1. Resistance	Rq	$R = \frac{V}{I}$	omh (Ω)	omh (Ω)
2. Conductance	G	$R = \frac{1}{R}$	$\mathrm{omh}^{-1}\left(\Omega^{-1} ight)$	seimen(S)
3. Specific resistance	ρ	$\rho = \frac{a}{1}$	ohm cm	ohm m
4. Conductivity	k	$k = G\frac{l}{a} = \frac{1}{R}\frac{l}{a} = \frac{l}{p}$	ohm ⁻¹ cm ⁻¹ (Ω^{-1} cm ⁻¹)	S m ⁻¹
	$\Lambda_{ m eq}$	$\Lambda_{\rm eq} = \frac{k}{\rm normality}$	ohm ⁻¹ cm ² eq ⁻¹ (Ω ⁻¹ cm ² eq ⁻¹)	$S m^2 eq^{-1}$
conductivity 6. Molar conductivity	$y\Lambda_{\rm m}$	$\Lambda_{\rm m} = \frac{\rm k}{\rm molarity}$	ohm ⁻¹ cm ² eq ⁻¹ (Ω ⁻¹ cm ² eq ⁻¹) S	m ² mol ⁻¹
7. Cell constant	G*	$G^* = \frac{l}{a}$	cm ⁻¹	m ⁻¹
Effect of dilution on				
Conductance \rightarrow Increases $\Lambda_{\rm m} \& \Lambda_{\rm eq}$ \rightarrow IncreasesConductivity \rightarrow Decreases				
Debye–Huckel–Onsager equation :				
 Λ_m = Λ⁰_m − b√C (or) Λ_{eq} = Λ^o_{eq} − b√C Λ_m = Molar conductance at given concentration Λ⁰_m = Molar conductance at infinite dilution C = concentration in molarity. b = Constant value depends on type of electrolyte, solvent & temp. With dilution the Degree of dissociation of weak electrolyte increases, so Λ_m increases. 				