Introduction to Trigonometry

- Trigonometric Ratio

$\sin \theta=\frac{\text { Opposite side }}{\text { Hypotenuse }}=\frac{\mathrm{AB}}{\mathrm{AC}}$
$\cos \theta=\frac{\text { Adjazent side }}{\text { Hypotenuse }}=\frac{\mathrm{BC}}{\mathrm{AC}}$
$\tan \theta=\frac{\text { Opposite side }}{\text { Adjacent side }}=\frac{\mathrm{AB}}{\mathrm{BC}}$
$\operatorname{cosec} \theta=\frac{1}{\sin \theta}=\frac{\text { Hypotenuse }}{\text { Opposite side }}=\frac{\mathbf{A C}}{\mathbf{A B}}$
$\sec \theta=\frac{1}{\cos \theta}=\frac{\text { Hypotenuse }}{\text { Adjacent side }}=\frac{\mathrm{AC}}{\mathrm{BC}}$
$\cot \theta=\frac{1}{\tan \theta}=\frac{\text { Adjacent side }}{\text { Opposite side }}=\frac{\mathrm{BC}}{\mathrm{AB}}$
Also, $\tan \theta=\frac{\sin \theta}{\cos \theta}, \cot \theta=\frac{\cos \theta}{\sin \theta}$

If one of the trigonometric ratios of an acute angle is known, then the remaining trigonometric ratios of the angle can be calculated.

Example:
If $\sin \boldsymbol{\theta}=\frac{\mathbf{7}}{\mathbf{2 5}}$, then find the value of $\sec \theta(1+\tan \theta)$.

Solution:

It is given that $\sin \theta=\frac{7}{25}$
$\sin \theta=\frac{\mathbf{A B}}{\mathbf{A C}}=\frac{7}{25}$
$\Rightarrow \mathrm{AB}=7 x$ and $\mathrm{AC}=25 x$, where x is some positive integer
By applying Pythagoras theorem in $\triangle \mathrm{ABC}$, we get:
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$
$\Rightarrow(7 x)^{2}+\mathrm{BC}^{2}=(25 x)^{2}$
$\Rightarrow 49 \mathrm{x}^{2}+\mathrm{BC}^{2}=625 \mathrm{x}^{2}$
$\Rightarrow \mathrm{BC}^{2}=625 x^{2}-49 x^{2}$
$\Rightarrow \mathrm{BC}=\sqrt{576} x=24 x$
$\therefore \sec \theta=\frac{\text { Hypotenuse }}{\text { Adjacent side }}=\frac{25}{24}$
$\tan \theta=\frac{\text { Opposite side }}{\text { Adjacent side }}=\frac{7}{24}$
$\therefore \sec \theta(1+\tan \theta)=\frac{25}{24}\left(1+\frac{7}{24}\right)=\frac{25}{24} \times \frac{31}{24}=\frac{775}{576}$

- Use trigonometric ratio in solving problem.

Example:
If $\tan \theta=\frac{3}{5}$, then find the value of $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}$
Solution:
$\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}$
Take $\cos \theta$ common from numerator and denominator both

$$
\begin{aligned}
& =\frac{\frac{\sin \theta}{\cos \theta}+1}{\frac{\sin \theta}{\cos \theta}-1} \\
& =\frac{\tan \theta+1}{\tan \theta-1} \\
& =\frac{\frac{3}{5}+1}{\frac{3}{5}-1} \\
& =\frac{\frac{3+5}{5}}{\frac{3-5}{5}} \\
& =\frac{8}{-2} \\
& =-4
\end{aligned}
$$

- Trigonometric Ratios of some specific angles

\boldsymbol{q}	$\mathbf{0}$	$\mathbf{3 0}^{\circ}$	$\mathbf{4 5}^{\circ}$	$\mathbf{6 0}^{\circ}$	$\mathbf{9 0}^{\circ}$
$\sin \boldsymbol{q}$	0	$\frac{\mathbf{1}}{\mathbf{2}}$	$\frac{\mathbf{1}}{\sqrt{2}}$	$\frac{\sqrt{3}}{\mathbf{2}}$	1
$\cos \boldsymbol{q}$	1	$\frac{\sqrt{3}}{\mathbf{2}}$	$\frac{\mathbf{1}}{\sqrt{2}}$	$\frac{\mathbf{1}}{\mathbf{2}}$	0
$\tan \boldsymbol{q}$	0	$\frac{\mathbf{1}}{\sqrt{3}}$	1	$\sqrt{\mathbf{3}}$	Not defined
$\operatorname{cosec} \boldsymbol{q}$	Not defined	2	$\sqrt{\mathbf{2}}$	$\frac{\mathbf{2}}{\sqrt{3}}$	1
$\sec \boldsymbol{q}$	1	$\frac{\mathbf{2}}{\sqrt{3}}$	$\sqrt{\mathbf{2}}$	2	Not defined
$\cot \boldsymbol{q}$	Not defined	$\sqrt{\mathbf{3}}$	1	$\frac{\mathbf{1}}{\sqrt{3}}$	0

Example 1:

$\triangle \mathrm{ABC}$ is right-angled at B and $\mathrm{AB}=6 \mathrm{~m}, \mathbf{B C}=\sqrt{\mathbf{1 2}} \mathrm{m}$. Find the measure of $\angle \mathrm{A}$ and $\angle \mathrm{C}$.

Solution:

$\mathrm{AB}=6 \mathrm{~m}$,
$B C=\sqrt{12} \mathrm{~m}=2 \sqrt{3} \mathrm{~m}$
$\tan \mathbf{C}=\frac{\text { Opposite side }}{\text { Adjacent side }}=\frac{\mathbf{A B}}{\mathbf{B C}}=\frac{6}{2 \sqrt{3}}=\sqrt{3}$
$\Rightarrow \tan \mathrm{C}=\tan 60^{\circ} \quad\left[\because \tan 60^{\circ}=\sqrt{3}\right]$
$\Rightarrow \angle \mathrm{C}=60^{\circ}$
$\therefore \angle A=180^{\circ}-(90+60)=30^{\circ}$

Example 2:

Evaluate the expression

$$
4\left(\cos ^{3} 60^{\circ}-\sin ^{3} 30^{\circ}\right)+3\left(\sin 30^{\circ}-\cos 60^{\circ}\right)
$$

Solution:

$$
\begin{aligned}
& 4\left(\cos ^{3} 60^{\circ}-\sin ^{3} 30^{\circ}\right)+3\left(\sin 30^{\circ}-\cos 60^{\circ}\right) \\
& =4\left[\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{3}\right]+3\left(\frac{1}{2}-\frac{1}{2}\right) \\
& =4 \times 0+3 \times 0=0+0=0
\end{aligned}
$$

- Trigonometric Ratios of Complementary Angles

$$
\begin{array}{ll}
\sin \left(90^{\circ}-\theta\right)=\cos \theta & \cos \left(90^{\circ}-\theta\right)=\sin \theta \\
\tan \left(90^{\circ}-\theta\right)=\cot \theta & \cot \left(90^{\circ}-\theta\right)=\tan \theta \\
\operatorname{cosec}\left(90^{\circ}-\theta\right)=\sec \theta & \sec \left(90^{\circ}-\theta\right)=\operatorname{cosec} \theta
\end{array}
$$

Where θ is an acute angle.
Example 1: Evaluate the expression
$\sin 28^{\circ} \sin 30^{\circ} \sin 54^{\circ} \sec 36^{\circ} \sec 62^{\circ}$
Solution:

$$
\begin{aligned}
& \sin 28^{\circ} \sin 30^{\circ} \sin 54^{\circ} \sec 36^{\circ} \sec 62^{\circ} \\
& =\left(\sin 28^{\circ} \sec 62^{\circ}\right)\left(\sin 54^{\circ} \sec 36^{\circ}\right) \sin 30^{\circ} \\
& =\left\{\sin 28^{\circ} \operatorname{cosec}\left(90^{\circ}-62^{\circ}\right)\right\}\left\{\sin 54^{\circ} \operatorname{cosec}\left(90^{\circ}-36^{\circ}\right)\right\} \sin 30^{\circ} \\
& =\left(\sin 28^{\circ} \operatorname{cosec} 28^{\circ}\right)\left(\sin 54^{\circ} \operatorname{cosec} 54^{\circ}\right) \sin 30^{\circ} \\
& =\left(\sin 28^{\circ} \frac{1}{\sin 28^{\circ}}\right)\left(\sin 54^{\circ} \frac{1}{\sin 54^{\circ}}\right) \times \frac{1}{2} \\
& =\frac{1}{2}
\end{aligned}
$$

Example 2: Evaluate the expression
$4 \sqrt{3}\left(\sin 40^{\circ} \sec 30^{\circ} \sec 50^{\circ}\right)+\frac{\sin ^{2} 34^{\circ}+\sin ^{2} 56^{\circ}}{\sec ^{2} 31^{\circ}-\cot ^{2} 59^{\circ}}$

Solution:

$$
\begin{aligned}
& \begin{array}{l}
4 \sqrt{3}\left(\sin 40^{\circ} \sec 30^{\circ} \sec 50^{\circ}\right)+\frac{\sin ^{2} 34^{\circ}+\sin ^{2} 56^{\circ}}{\sec ^{2} 31^{\circ}-\cot ^{2} 59^{\circ}} \\
=4 \sqrt{3}\left[\sec 30^{\circ}\left(\sin 40^{\circ} \sec 50^{\circ}\right)\right]+\frac{\sin ^{2} 34^{\circ}+\sin ^{2}\left(90-56^{\circ}\right)}{\sec ^{2} 31^{\circ}-\tan ^{2}\left(90-59^{\circ}\right)} \\
\\
\left.=\because \cos \left(90^{\circ}-\theta\right)=\sin \theta, \tan \left(90^{\circ}-\theta\right)=\cot \theta\right] \\
=4 \sqrt{3}\left[\sec 30^{\circ} \sin 40^{\circ} \operatorname{cosec}\left(90-50^{\circ}\right)\right]+\frac{\sin 34^{\circ}+\cos ^{2} 34^{\circ}}{\sec ^{2} 31^{\circ}-\tan ^{2} 31^{\circ}} \\
=4 \sqrt{3}\left[\frac{2}{\sqrt{3}} \sin 40^{\circ} \operatorname{cosec} 40^{\circ}\right]+\frac{1}{1} \\
=8+1=9
\end{array}
\end{aligned}
$$

- Trigonometric Identities

1. 2. $\cos ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~A}=1$
1. 2. $1+\tan ^{2} \mathbf{A}=\sec ^{2} \mathbf{A}$
1. 3. $1+\cot ^{2} \mathbf{A}=\operatorname{cosec}^{2} \mathbf{A}$

Example:
If $\cos \theta=\frac{5}{7}$, find the value of $\cot \theta+\operatorname{cosec} \theta$

Solution:

We have, $\cos \theta=\frac{5}{7}$

$$
\begin{aligned}
& \text { Now, } \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \therefore \sin \theta=\sqrt{1-\cos ^{2} \theta} \\
& =\sqrt{1-\left(\frac{5}{7}\right)^{2}} \\
& =\sqrt{\frac{49-25}{49}}=\frac{2 \sqrt{6}}{7} \\
& \therefore \operatorname{cosec} \theta=\frac{7}{2 \sqrt{6}} \\
& \text { Also, } \cot \theta=\frac{\cos \theta}{\sin \theta} \\
& =\frac{\frac{5}{7}}{\frac{2 \sqrt{6}}{7}}=\frac{5}{2 \sqrt{6}} \\
& \therefore \cot \theta+\operatorname{cosec} \theta=\frac{5}{2 \sqrt{6}}+\frac{7}{2 \sqrt{6}} \\
& =\frac{12}{2 \sqrt{6}}=\frac{6}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}} \\
& =\sqrt{6}
\end{aligned}
$$

- Use of trigonometric identities in proving relationships involving trigonometric ratio.

Example: Prove the following identities
$\tan ^{2} \theta+\cot ^{2} \theta+2=\sec ^{2} \theta \operatorname{cosec}^{2} \theta$
Solution:
We have

$$
\text { LHS }=\tan ^{2} \theta+\cot ^{2} \theta+2
$$

$$
\begin{aligned}
& =\tan ^{2} \theta+\cot ^{2} \theta+2 \cdot \tan \theta \cdot \cot \theta \quad[\because \tan \theta \cdot \cot \theta=1] \\
& =(\tan \theta+\cot \theta)^{2} \quad\left[\because a^{2}+b^{2}+2 a b=(a+b)^{2}\right] \\
& =\left(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}\right)^{2} \\
& =\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cdot \cos \theta}\right)^{2} \\
& =\left(\frac{1}{\sin \theta \cdot \cos \theta}\right)^{2} \\
& =(\sec \theta \cdot \operatorname{cosec} \theta)^{2} \\
& =\sec ^{2} \theta \cdot \operatorname{cosec}^{2} \theta \\
& =\text { RHS }
\end{aligned}
$$

