ALL INDIA TEST SERIES
 TEST - 10

JEE (Advanced)

General Instructions:

- \quad The test consists of total $\mathbf{5 4}$ questions.
- \quad Each subject (PCM) has $\mathbf{1 8}$ questions.
- This question paper contains Three Parts.
- Part-I is Physics, Part-II is Chemistry and Part-III is M athematics.
- \quad Each Part is further divided into Three Sections: Section-A, Section - B \& Section-C.

Section-A (01-06, 19-24, 37-42) this section contains 18 multiple choice questions.
Each question has FOUR options. ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
For each question, choose the option(s) corresponding to (all) the correct answer(s)
Answer to each question will be evaluated according to the following marking scheme:
Full Marks : +4 If only (all) the correct option(s) is (are) chosen:
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen and both of which are correct;
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : $\mathbf{0}$ If none of the options is chosen (i. e. the question is unanswered);
Negative Marks :-2 In all other cases
Section-B (07-12, 25-30, 43-48) contains 18 Numerical based questions with Single digit integer as answer, ranging from $\mathbf{0}$ to $\mathbf{9}$ and each question carries +3 marks for correct answer and -1 mark for wrong answer.
Section-C (13-18, $\mathbf{3 1}$ - 36, 49-54) contains 18 Numerical answer type questions with answer XXXXX. XX and each question carries $\mathbf{+ 4}$ marks for correct answer and $\mathbf{0}$ marks for wrong answer.

SECTION - A

(One or More than one correct type)

This section contains 06 multiple choice questions. Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four options is(are) correct.

1. A force $\vec{F}=x^{2} y^{2} \hat{i}+x^{2} y^{2} \hat{j}(N)$ acts on a particle which moves in $X Y$ plane. Choose the correct option(s)
(A) \vec{F} is a conservative force
(B) Work done for path $A B C$ is $\frac{a^{5}}{3}(\mathrm{~J})$
(C) Work done for path ADC is $\frac{a^{5}}{3}(\mathrm{~J})$
(D) Work done for path AC is $\frac{2 \mathrm{a}^{5}}{3}(\mathrm{~J})$
2. A metal sphere of radius R and specific heat C is rotated about an axis passing through its centre at a speed n rotation/second. It is suddenly stopped and 50% of its energy is used in increasing its temperature, then choose the correct statement(s) from the following?
(A) Kinetic energy used to raise the temperature of the sphere is $\frac{2 \pi^{2} \mathrm{n}^{2}}{5} \mathrm{MR}^{2}$
(B) Kinetic energy used to raise the temperature of the sphere is $\frac{5 \pi^{2} n}{3} M R$
(C) The rise in the temperature of the sphere is $\frac{4 \pi^{2} n^{2} R^{2}}{7 C}$
(D) The rise in the temperature of the sphere is $\frac{2 \pi^{2} \mathrm{n}^{2} \mathrm{R}^{2}}{5 \mathrm{C}}$
3. Choose the correct options for the circuit shown.

(A) Potential of the point P is 7 V
(B) Current in the 3R resistance is $7 / R$
(C) Current in the 3R resistance is $7 / 3 R$
(D) Potential of the point P is 3 V
4. Two inductors of self-inductances L_{1} and L_{2} and of resistances R_{1} and R_{2} (not shown here) respectively, are connected in the circuit as shown in figure. At the instant $t=0$, key K is closed. Choose the correct options for which the galvanometer will show zero deflection at all times after the key is closed.
(A) $\quad \frac{L_{1}}{L_{2}}=\frac{R_{3}}{R_{4}}$

(B) $\quad \frac{\mathrm{L}_{1}}{\mathrm{~L}_{2}}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}$
(C) $\quad \frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}}$
(D) None of these
5. The graph between the stopping potential $\left(\mathrm{V}_{0}\right)$ and $\left(\frac{1}{\lambda}\right)$ is shown in the figure. ϕ_{1}, ϕ_{2} and ϕ_{3} are work functions. Which of the following is/are correct?
(A) $\quad \phi_{1}: \phi_{2}: \phi_{3}=1: 2: 4$
(B) $\phi_{1}: \phi_{2}: \phi_{3}=4: 2: 1$
(C) $\tan \theta \propto \frac{\mathrm{hc}}{\mathrm{e}}$

(D) ultraviolet can be used to emit photoelectrons from metal 2 and metal 3 only
6. A large plate with uniform surface charge density σ is moving with constant speed v as shown in the figure. The magnetic field at a small distance from plate is
(A) $\mu_{0} \sigma \mathrm{~V}$ in magnitude

(B) $\frac{\mu_{0} \sigma V}{2}$ in magnitude
(C) perpendicular to plate
(D) parallel to plate

SECTION - B

(Single Digit Integer Type)
This section contains 06 questions. The answer to each question is a Single Digit integer ranging from 0 to 9 , both inclusive.
7. The densities of two solid spheres A and B of the same radii R vary with radial distance r as $\rho_{A}(r)=k\left(\frac{r}{R}\right)$ and $\rho_{B}(r)=k\left(\frac{r}{R}\right)^{5}$, respectively, where k is a constant. The moments of inertia of the individual spheres about axes passing through their centres are I_{A} and I_{B}, respectively. If $\frac{I_{B}}{I_{A}}=\frac{n}{10}$, the value of n is
8. A uniform rod is placed on two spinning wheels as shown in figure. The axes of the wheels are separated by a distance $\ell=\frac{50}{\pi^{2}} \mathrm{~m}$, the coefficient of friction between the rod and the wheels is $\mu=0.1$. The rod performs harmonic oscillations. The period of these oscillations is $10 x \mathrm{sec}$. Find the value of x .
9. A ball of mass of mass $10^{-2} \mathrm{~kg}$ and having a charge $+3 \times 10^{-6} \mathrm{C}$ is tied at one end of a 1 m long thread. The other end of the thread is fixed and a charge $-3 \times 10^{-6} \mathrm{C}$ is placed at this end. The ball can move in a circular orbit of radius 1 m in the vertical plane. Initially, the ball is at the bottom. Find minimum initial horizontal velocity of the ball so that it will be able to complete the full circle.
10. A circular wire loop of radius R is placed in the $x-y$ plane 1 centered at the origin O . A square loop of side $a(a \ll R)$ having two turns is placed with its centre at $z=\sqrt{3} R$ along the axis of the circular wire loop, as shown in figure. The plane of the square loop makes an angle 45° with respect to the z-axis. If the mutual inductance between the loops is given by $\frac{\mu_{0} a^{2}}{2^{p / 2} R^{\prime}}$ then the value of p is

11. A laser beam has intensity $2.5 \times 10^{14} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$. If the amplitude of magnetic field in the beam is $16 \mathrm{k} \times 10^{-2} \mathrm{~T}$. Find the value of k .
12. A thermodynamic system is taken from an initial state I with internal energy $U_{i}=100 \mathrm{~J}$ to the final state f along two different paths iaf and ibf, as schematically shown in the figure. The work done by the system along the paths af, ib and bf are $\mathrm{w}_{\mathrm{af}}=200 \mathrm{~J}$, $\mathrm{W}_{\mathrm{ib}}=50 \mathrm{~J}$ and $\mathrm{W}_{\mathrm{bf}}=100 \mathrm{~J}$ respectively. The heat supplied to the system along the path iaf, ib and bf are Qita, Qib and Qbf respectively. If the internal energy of the system in the state b is

$U_{b}=200 \mathrm{~J}$ and $Q_{\text {iaf }}=500 \mathrm{~J}$, The ratio $\frac{Q_{b t}}{Q_{i b}}$ is

SECTION - C

(Numerical Answer Type)
This section contains 06 questions. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the SECOND DECIMAL PLACE; e.g. XXXXX. XX).
13. In a sample of radioactive material, the probability that a particular nucleus will decay in next 2 hour is 8×10^{-4}. Find the half-life of the radioactive sample
[Take $\ln 2=0.693, \ln (0.9992)=-8 \times 10^{-4}$]
14. Sunrays pass through a pinhole in the roof of a hut and produce an elliptical spot on the floor. The minor and major axes of the spot are 6 cm and 12 cm respectively. The angle subtended by the diameter of the sun at our eye is 0.5°. Calculate the height of the roof.
15. A spool has the shape shown in figure. Radii of inner and outer cylinders are R and $2 R$ respectively. Mass of the spool is 3 m and its moment of inertia about the shown axis is $2 \mathrm{mR}^{2}$. Light threads are tightly wrapped on both the cylindrical parts. The spool is placed on a rough surface with two masses $\mathrm{m}_{1}=\mathrm{m}$ and $\mathrm{m}_{2}=2 \mathrm{~m}$ connected to the strings as shown. The string segment between spool and the pulleys P_{1} and P_{2} are horizontal. The centre of mass of the spool is at its geometrical centre. System is released from rest. What is minimum value of coefficient of friction between the spool and the table so that it does not slip?

16. A pendulum has length $L=1.8 \mathrm{~m}$. The bob is released from position shown in the figure. Find the tension in the string when the bob reaches the lowest position. Mass of the bob is 1 kg .

17. A metallic hemisphere is having dust on its surface. The sphere is rotated about a vertical axis passing through its centre at angular speed $\omega=10 \mathrm{rad} \mathrm{s}^{-1}$. Now the dust is visible only on top 20% area of the curved hemispherical surface. Radius of the hemisphere is $R=0.1 \mathrm{~m}$. Find the coefficient of friction between the dust particle and the hemisphere $\left[\mathrm{g}=10 \mathrm{~ms}^{-2}\right]$.

18. In the arrangement shown in the figure A is an equilateral wedge and the ball B is rolling down the incline XO. Find the velocity of the wedge (of course, along OY) at the moment velocity of the ball is $10 \mathrm{~m} / \mathrm{s}$ parallel to the incline XO.

Chemistry

PART - II

SECTION - A

(One or More than one correct type)

This section contains 06 multiple choice questions. Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four options is(are) correct.
19. Which is/are correct statement?
(A) Packing fraction in 2D-hcp is 0.785
(B) Packing fraction in AAA is 0.52
(C) Packing fraction in ABAB is 0.74
(D) Void fraction in ABCABC is 0.26
20. Indicate the correct statement for equal volumes of $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$ and 1 atm .
(A) The average translational K.E. per molecule is the same for N_{2} and CO_{2}
(B) The rms speed is same for both N_{2} and CO_{2}
(C) The density of N_{2} is less than that of CO_{2}
(D) The total translational K.E. of both N_{2} and CO_{2} is the same
21. Select correctly matched.
(A) $\quad \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow$ two tetrahedral units are joined by their common corner
(B) $\quad \mathrm{S}_{2} \mathrm{O}_{6}^{2-} \rightarrow$ centre of one tetrahedral is the corner of other tetrahedral
(C) $\quad \mathrm{S}_{2} \mathrm{~F}_{10} \rightarrow$ two octahedral joined together
(D) $\quad \mathrm{S}_{2} \mathrm{O}_{8}^{2-} \rightarrow$ two tetrahedral unit joined by their corners
22. Which of the following represent correct similarity between sulphur and chromium?
(A) Both exhibit hexavalency
(B) Sulphate and chromate of Ba^{2+} are water insoluble
(C) Trioxide $\left(\mathrm{MO}_{3}\right)$ both are acidic
(D) Sulphate $\left(\mathrm{SO}_{4}^{2-}\right)$ and chromate $\left(\mathrm{CrO}_{4}^{2-}\right)$ have same colouration
23. $\mathrm{H}_{2} \mathrm{~A}$ is a weak diprotic acid. If the pH of $0.1 \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{~A}$ solution is 3 and concentration of A^{2-} is 10^{-12} at $25^{\circ} \mathrm{C}$.
Select correct statement(s)
(A) $\quad\left[\mathrm{H}^{+}\right]_{\text {total }} \approx\left[\mathrm{H}^{+}\right]$from first step of ionization of acid $\mathrm{H}_{2} \mathrm{~A}$
(B) Concentration of OH^{-}in solution is $10^{-3} \mathrm{M}$
(C) The value of $\mathrm{K}_{\mathrm{a}_{1}}$ is nearly 10^{-5}
(D) $\quad \mathrm{pK}_{\mathrm{a}_{2}}-\mathrm{pK}_{1}=9$
24. Determine which of the following reactions taking place at constant pressure represents system that do work on the surrounding environment
I. $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})$
II. $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$
III. $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
(A) 1
(B) III
(C) II and III
(D) I and II

SECTION - B
 (Single Digit Integer Type)

This section contains 06 questions. The answer to each question is a Single Digit integer ranging from 0 to 9 , both inclusive.
25. If edge fraction unoccupied in ideal anti-fluorite structure is x. Calculate the value of Z. Where $Z=\frac{x}{0.097}$
26. Consider the following list of reagents:

Acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, alkaline $\mathrm{KMnO}_{4}, \mathrm{CuSO}_{4}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Cl}_{2}, \mathrm{O}_{3}, \mathrm{FeCl}_{3}, \mathrm{HNO}_{3}$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The total number of reagents that can oxidise aqueous iodide to iodine is:
27. One mole ideal monoatomic gas is heated according to path $A B$ and $A C$. If temperature of state B and state C are equal. Calculate $\frac{q_{A C}}{q_{A B}} \times 10$.

28. Find number of substance which produce H_{2} gas when react with cold water. $\mathrm{Ca}, \mathrm{CaH}_{2}, \mathrm{Mg}, \mathrm{MgCl}_{2}, \mathrm{Ba}, \mathrm{BaO}_{2}, \mathrm{NaHCO}_{3}, \mathrm{Ca}_{3} \mathrm{~N}_{2}$.
29. A molten mixture contain following substance, $\mathrm{Cu}, \mathrm{FeO}, \mathrm{PbO}, \mathrm{CaO}, \mathrm{MgO}, \mathrm{Ag}$
Find number of substances which are removed when molten mixture is treated with SiO_{2}.
30. $X=$ total number of substitution and elimination product(s). Find the value of X.

SECTION - C
 (Numerical Answer Type)

This section contains 06 questions. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the SECOND DECIMAL PLACE; e.g. XXXXX. XX).
31. The rate of a first order reaction is $0.04 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ at 10 minutes and 0.03 molt's ' at 20 minutes after initiation. Find the half-life of the reaction
32. A solution containing $1 \mathrm{M} \mathrm{XSO}(\mathrm{aq})$ and $1 \mathrm{M} \mathrm{YSO} 44(\mathrm{aq})$ is electrolysed. If conc. Of X^{2+} is $10^{-2 \mathrm{M}}$ when deposition of Y^{2+} and X^{2+} starts simultaneously, calculate the value of Z .
Given:
$\frac{2.303 R T}{F}=0.06$
$\mathrm{E}_{\mathrm{X}^{2+} / \mathrm{X}}^{0}=-0.12 \mathrm{~V} ; \mathrm{E}_{\mathrm{Y}^{2+} / \mathrm{Y}}^{0}=-0.24 \mathrm{~V}$
33. Given the two concentration of $\mathrm{HCN}\left(\mathrm{K}_{\mathrm{a}}=10^{-9}\right)$ are 0.1 M and 0.001 M respectively. What will be the ratio of degree of dissociation?
34. The degree of hydrolysis of $0.1 \mathrm{M} \mathrm{RNH}_{3} \mathrm{Cl}$ solution is 1.0%. If the concentration of $\mathrm{RNH}_{3} \mathrm{Cl}$ is made 0.4 M , what is the new degree of hydrolysis (in percentage)?
35. Calculate wave number (in cm^{-1}) corresponding to shortest wavelength transition in balmer series of atomic hydrogen.
36. The equilibrium constant for the following reaction in aqueous solution is 0.90 .
$\mathrm{H}_{3} \mathrm{BO}_{3}+$ glycerin $\rightleftharpoons\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right.$ - glycerin $)$
How many moles of glycerin should be added per litre of $0.10 \mathrm{M} \mathrm{H}_{3} \mathrm{BO}_{3}$ so that 80% of the $\mathrm{H}_{3} \mathrm{BO}_{3}$ is converted to the boric-acid-glycerin complex?

Mathematics

PART - III

SECTION - A

(One or More than one correct type)

This section contains 06 multiple choice questions. Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four options is(are) correct.
37. Let $\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2} \ldots \ldots . . .+a_{2 n} x^{2 n}$, where n is odd integer, if
$S_{1}=a_{0}+a_{4}+a_{8}+\ldots \ldots \ldots \ldots .$.
$S_{2}=a_{1}+a_{5}+a_{9}+$ \qquad
$S_{3}=a_{2}+a_{6}+a_{10}+$ \qquad
$S_{4}=a_{3}+a_{7}+a_{11}+$ \qquad then
(A) $\quad S_{1}=S_{3}$
(B) $\quad S_{2}=S_{4}$
(C) $\quad S_{2}+S_{4}=0$
(D) either $S_{1}=S_{2}=S_{3}$ or $S_{1}=S_{3}=S_{4}$
38. Let $f_{1}(x)=\sin ^{-1}\left(\cos \left(\sin ^{2} x\right)\right), f_{2}(x)=\cos ^{-1}\left(\sin \left(\cos ^{2} x\right)\right)$
$f_{3}(x)=\sin ^{-1}\left(\cos \left(\cos ^{2} x\right)\right), f_{4}(x)=\cos ^{-1}\left(\sin \left(\sin ^{2} x\right)\right)$, then choose the correct option(s)
(A) $\quad \sum_{i=1}^{4} f_{i}(x)=2 \pi-2$
(B) $\quad \sum_{i=1}^{4}(-1)^{i} f_{i}(x)=0$
(C) $\quad \sum_{i=1}^{4}(-1)^{\left[\frac{i}{3}\right]} f_{i}(x)=0$ (where [.] is greater integer function)
(D) $\quad f_{1}(x)>f_{2}(x) \Rightarrow \cos 2 x>0$
39. If the area of a triangle is given Δ and angle C is given and if the value of the side C opposite to angle C is minimum then
(A) $\quad \mathrm{a}=\sqrt{\frac{2 \Delta}{\sin C}}$
(B) $\quad \mathrm{b}=\sqrt{\frac{2 \Delta}{\sin \mathrm{C}}}$
(C) $a=\frac{4 \Delta}{\sin C}$
(D) $\mathrm{b}=\frac{4 \Delta}{\sin \mathrm{C}}$
40. If the equation $x^{5}-10 a^{3} x^{2}+b^{4} x+c^{5}=0$ has three equal roots, then
(A) $\quad 2 b^{2}-10 a^{3} b^{2}+c^{5}=0$
(B) $6 \mathrm{a}^{5}+\mathrm{c}^{5}=0$
(C) $2 c^{5}-10 a^{3} b^{2}+b^{4} c^{5}=0$
(D) $b^{4}=15 a^{4}$
41. Which of the following is /are true ?

$$
\begin{equation*}
\int_{0}^{1} \sin \left(x^{2}+2 x+1\right) d x-\int_{1}^{2} \sin x^{2} d x=0 \tag{A}
\end{equation*}
$$

(B)

$$
\int_{-1}^{1} e^{\sin x} d x-\int_{0}^{1} e^{\sin (2 x+1)} d x=0
$$

(C) $\quad \int_{-5}^{-4} \sin \left(x^{2}-3\right) d x+\int_{-2}^{-1} \sin \left(x^{2}+12 x+33\right) d x=0$
(D)

$$
\int_{-4}^{4} \cos x^{2} d x-8 \int_{0}^{1} \cos 16(2 x-1)^{2} d x=0
$$

42. Let $f(x)=\sec ^{-1}\left(\left[1+\sin ^{2} x\right]\right)$ ([.] denotes the greatest integer function). Then set of points, where $f(x)$ is not continuous is
(A) $\quad\left\{\frac{n \pi}{2}, n \in 1\right\}$
(B) $\quad\left\{(2 n-1) \frac{\pi}{2}, n \in I\right\}$
(C) $\left\{(2 n+1) \frac{\pi}{2}, n \in I\right\}$
(D) None of these

SECTION - B

(Single Digit Integer Type)
This section contains 06 questions. The answer to each question is a Single Digit integer ranging from 0 to 9 , both inclusive.
43. A pair of tangents is drawn from the point $\mathrm{A}(23,3)$ to the circle whose equation is $\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}-$ $4 y+4=0$ to touch the circle in B and C. A third tangent intersects the segment $A B$ in P and $A C$ in R and touch the circle in Q. If P is the perimeter of the triangle APR, than $|p-50|=$ \qquad
44. If z is a complex number and the minimum value of $|z|+|z-1|+|2 z-3|$ is λ and if $y=2[x]+3=$ $3[x-\lambda]$, then find the value of $\frac{[x+y]}{10}$ (where [.] denotes the greatest integer function\}
45. John has x children by his first wife. Mary has $x+1$ children by her first husband. They marry and have children their own. In the whole family there are 24 children, Assuming that two children of the same parents do no fight. If the maximum no. of fights that can take place is λ then $382 / \lambda$ is.
46. Value of $\sum_{k=1}^{\infty} \sum_{r=0}^{k} \frac{1}{3^{k}}\left({ }^{k} C_{r}\right)$ is
47. If equation $4 x^{4}-a x^{3}+b x^{2}-c x+6=0$ has four distinct real roots say $x_{1}<x_{2}<x_{3}<x_{4}$ such that $\frac{1}{x_{1}}+\frac{2}{x_{2}}+\frac{3}{x_{3}}+\frac{4}{x_{4}}=8, \quad a, b, c \in R^{+}$then $\frac{x_{4}}{x_{1}}$ is equal to
48. If α, β are the roots of the equation $x 2-2 x+3=0$, then find the constant term of the equation whose roots are $\alpha 3-3 \alpha 2+5 \alpha-2 \& \beta 3-\beta 2+\beta+5$.

SECTION - C
 (Numerical Answer Type)

This section contains 06 questions. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the SECOND DECIMAL PLACE; e.g. XXXXX. . XX).
49. 10 IIT \& 2 PET students sit in a row. The total number of ways in which exactly 3 IIT students sit between 2 PET students is K then $\frac{K}{1000}$ is
50. The number of integral solution of this equation $x+y+z+w<25$ such that $x>-2, y>1, z \geq 0$, $w>3$ is
51. The value of $\frac{y_{1} \cdot y_{2} \cdot y_{3}}{\left(y_{1}-x_{1}\right)\left(y_{2}-x_{2}\right)\left(y_{3}-x_{3}\right)}$ when $\left(x_{i}, y_{i}\right), i=1,2,3$ satisfy both $x^{3}-3 x y^{2}=2005 \& y^{3}-3 x^{2} y=2004$ is
52. If $z=\frac{1}{3}+\frac{1.3}{3.6}+\frac{1.3 .5}{3.6 .9}+\ldots \ldots . . \infty$ then find value of $\frac{z^{2}+2 z+100}{10}$ is equal to
53. Let $f(x)$ is a quadratic expression with positive integral coefficients such that for every. $\alpha \beta \in R$, $\beta>\alpha$.
$\int_{\alpha}^{\beta} f(x) d x>0$ Let $g(t)=f^{\prime \prime}(t) . f(t)$ and $g(0)=12$. If no of quadratics are ab where a and b are natural number than $\frac{a+b}{2}$ is equal to. (ab is 2 digit number)
54. Find the integral value of a, for which the quadratic expression $a x^{2}+(a-2) x-2$ is negative for exactly two integral values of x.

ALL INDIA TEST SERIES TEST - 10
 JEE (Advanced)

ANSWERS, HINTS \& SOLUTIONS

Physics

PART - I

SECTION - A

1. B, C, D

Sol. If \vec{F} is conservative, then
$F_{x}=-\frac{\partial U}{\partial x}, F_{y}=-\frac{\partial U}{\partial y}$
And so $\frac{\partial F_{x}}{\partial y}=-\frac{\partial^{2} U}{\partial y \partial x}=-\frac{\partial^{2} U}{\partial x \partial y}=\frac{\partial F_{y}}{\partial x}$
$W=\int \vec{F} \cdot \overline{d s}=\left(x^{2} y^{2} \hat{i}+x^{2} y^{2} \hat{j}\right) \cdot(d x \hat{i}+d y \hat{j})$
$=\int x^{2} y^{2} d x+\int x^{2} y^{2} d y$
$W_{B C}=\int_{0}^{a} a^{2} y^{2} d y=\frac{a^{5}}{3}$
Thus, $W_{A B C}=W_{A B}+W_{B C}=\frac{a^{5}}{3}(\mathrm{~J})$
$W_{A C}=2 \int_{0}^{a} x^{4} d x=\frac{2 a^{5}}{3}(J)$
2. A, D

Sol. Kinetic energy of the sphere

$$
K=\frac{1}{2} I \omega^{2}
$$

$$
\begin{aligned}
& =\frac{1}{2} \times \frac{2}{5} M R^{2}(2 \pi n)^{2} \\
& =\frac{4}{5} \pi^{2} n^{2} M R^{2}
\end{aligned}
$$

Kinetic energy used to raise, the temperature

$$
\begin{array}{ll}
& =0.5\left(\frac{4}{5} \pi^{2} \mathrm{n}^{2} \mathrm{MR}^{2}\right) \\
& =\frac{2}{5} \pi^{2} \mathrm{n}^{2} m R^{2} \\
\therefore \quad & \Delta \mathrm{~T}=\frac{2 \pi^{2} \mathrm{n}^{2} \mathrm{R}^{2}}{5 \mathrm{C}}
\end{array}
$$

3. A, C

Sol.

$$
\therefore \quad V_{P}=7 \mathrm{~V} ; i=\frac{7-0}{3 R}=\frac{7}{3 R}
$$

4. A, B, C, D

Sol. $\quad V_{B}=V_{D}$
$L_{1} \frac{d i_{1}}{d t}+i_{1} R_{1}=L_{2} \frac{d i_{2}}{d t}+i_{2} R_{2}$
$\mathrm{i}_{1} \mathrm{R}_{3}=\mathrm{i}_{2} \mathrm{R}_{4}$

From Equation (1) and (2)

$$
\begin{align*}
& \frac{d i_{1}}{d t} R_{3}=\frac{d i_{2}}{d t} R_{4} \\
& \text { or } \frac{d i_{1}}{d t}=\frac{R_{4}}{R_{3}} \frac{d i_{2}}{d t} \text { and } i_{1}=i_{2}=\frac{R_{4}}{R_{3}} \\
& \left(L_{1} \frac{R_{4}}{R_{3}}-L_{2}\right) \frac{d i_{2}}{d t}=i_{2}\left[R_{2}-\frac{R_{1} R_{4}}{R_{3}}\right] \tag{3}\\
& \text { At } t=0, i_{2}=0 \\
& \therefore \quad \frac{L_{1}}{L_{2}}=\frac{R_{3}}{R_{4}} \tag{4}
\end{align*}
$$

$\mathrm{R}_{2}-\frac{\mathrm{R}_{4} \mathrm{R}_{1}}{\mathrm{R}_{3}}=0 \therefore \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{\mathrm{R}_{3}}{\mathrm{R}_{4}}$
From Equation (4), (5), $\frac{L_{1}}{L_{2}}=\frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}}$
5. A, C

Sol. $\quad \phi_{1}: \phi_{2}: \phi_{3}=\mathrm{eV}_{0_{1}}: \mathrm{eV}_{0_{2}}: \mathrm{eV}_{0_{3}}$

$=\mathrm{V}=\mathrm{V}_{01}: \mathrm{V}_{02}: \mathrm{V}_{03}=0.001: 0.002: 0.004=1: 2: 4$
Therefore (a) is correct

$$
\begin{aligned}
\Rightarrow \quad \mathrm{V} & =\frac{\mathrm{hc}}{\mathrm{e} \lambda}-\frac{\phi}{\mathrm{e}} \\
\mathrm{~m} & =\frac{\mathrm{hc}}{\mathrm{e}}=\tan \theta \\
\frac{1}{\lambda_{0_{1}}} & =0.001 \mathrm{~nm}^{-1} \Rightarrow \lambda_{01}=\frac{1}{0.001}=1000 \mathrm{mn}
\end{aligned}
$$

Also, $\quad \frac{1}{\lambda_{0_{2}}}=0.002 \mathrm{~nm}^{-1} \Rightarrow \lambda_{02}=500 \mathrm{mn}$ and $\lambda_{0_{2}}=250 \mathrm{~nm}$
6. B, D

Sol. Current flowing per unit length $=\sigma \frac{\mathrm{dx}}{\mathrm{dt}}=\sigma \mathrm{V}$

By Ampere's law
$\mathrm{B} \ell+\mathrm{B} \ell=\mu_{0} \sigma \mathrm{v} \ell \Rightarrow \mathrm{B}=\frac{\mu_{0} \sigma \mathrm{v}}{2}$

SECTION - B

7. 6

Sol. $\quad I=\int_{0}^{R}(d m) r^{2}$

$$
\begin{array}{ll}
\therefore & I=\int_{0}^{R} \rho \times 4 \pi r^{2} d r \times r^{2} \\
\therefore & I=\int_{0}^{R} \rho \times 4 \pi r^{2} d r \times r^{2} \\
\therefore & I_{A}=4 \pi \int_{0}^{R} k \frac{r}{R} \times r^{4} d r=\frac{4 \pi K}{R} \int_{0}^{R} r^{5} d r \\
& =\frac{4 \pi K}{R}\left(\frac{R^{6}}{6}\right)=4 \pi K \frac{R^{5}}{6}
\end{array}
$$

$$
I_{B}=4 \pi \int_{0}^{R} K\left(\frac{r}{R}\right)^{5} r^{4} d r=\frac{4 \pi K}{R^{5}} \times \frac{R^{10}}{10}=4 \pi K \frac{R^{5}}{10}
$$

$$
\therefore \quad \frac{\mathrm{I}_{B}}{\mathrm{I}_{A}}=\frac{6}{10} \Rightarrow n=6
$$

8. 1

Sol.

$$
\begin{aligned}
\mathrm{F} & =-\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right) \\
& =-\left(\mu \mathrm{N}_{1}-\mu \mathrm{N}_{2}\right) \\
& =-\mu\left(\mathrm{N}_{1}-\mathrm{N}_{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{N}_{1}+\mathrm{N}_{2}=\mathrm{mg} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
m g(\ell / 2-x)-N_{2} \ell=0 \tag{2}
\end{equation*}
$$

$$
\therefore \quad \mathrm{N}_{2}=\frac{\mathrm{mg}}{\ell}(\ell / 2-\mathrm{x})
$$

$$
=\frac{m g}{\ell}\left[\frac{\ell}{2}+x\right]
$$

$$
\mathrm{F}=\mu\left[\frac{\mathrm{mg}}{\ell}\left(\frac{\ell}{2}+\mathrm{x}\right)-\frac{\mathrm{mg}}{\ell}\left(\frac{\ell}{2}-\mathrm{x}\right)\right]
$$

$$
=-\mu \frac{m g}{\ell}(2 x)
$$

$$
=\pi \sqrt{\frac{2 \ell}{\mu \mathrm{~g}}}=10 \mathrm{sec}
$$

9. 7

Sol. $\quad\left(T_{A}+F_{e}\right)-m g=\frac{m v_{A}^{2}}{\ell}$
$\left(T_{A}+F_{e}\right)-m g=\frac{m v_{A}^{2}}{\ell}$
$m g-F_{e}=\frac{m v_{B}^{2}}{\ell}$
$F_{e}=\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{\ell^{2}}$
$\frac{1}{2} m v_{A}^{2}=\frac{1}{2} m v_{B}^{2}+m g(2 \ell)$
$\mathrm{v}_{\mathrm{A}}=7 \mathrm{~m} / \mathrm{s}$
10. 7

Sol. $\quad B=\frac{\mu_{0}}{4 \pi} \frac{2 \pi i R^{2}}{\left(R^{2}+3 R^{2}\right)^{3 / 2}}=\frac{\mu_{0} i}{16 R}$
$M=\frac{N \phi}{i}=\frac{2}{i}\left[\frac{\mu_{0} i}{16 R} \times a^{2} \cos 45^{\circ}\right]$
$\therefore \quad M=\frac{\mu_{0} \mathrm{a}^{2}}{\frac{7}{2^{2} R}}$
11. 9

Sol. The intensity is given by

$$
I=\frac{1}{2} \in_{0} E^{2} C
$$

or $\quad 2.5 \times 10^{14}=\frac{1}{2} \times\left(8.86 \times 10^{-12}\right) \times \mathrm{E}_{0}^{2} \times\left(3 \times 10^{8}\right)$
$\therefore \quad \mathrm{E}_{0}=4.3 \times 10^{8} \mathrm{~V} / \mathrm{m}$
and $\quad B_{0}=\frac{E_{0}}{C}=1.44 \mathrm{~T}$
12. 2

Sol. Applying first law of thermodynamics to path iaf

$$
\begin{array}{ll}
& \mathrm{Q}_{\text {laf }}=\Delta \mathrm{U}_{\text {laf }}+\mathrm{W}_{\text {iaf }} \\
& 500=\Delta \mathrm{U}_{\text {liff }}+200 \\
\therefore \quad \Delta \mathrm{U}_{\text {lif }}=300 \mathrm{~J}
\end{array}
$$

Now,

$$
\begin{align*}
Q_{\text {iaf }} & =\Delta U_{\text {ibf }}+W_{\text {ib }}+W_{\text {bf }} \\
& =300+50+100 \\
Q_{\text {ib }} & +Q_{b f}=450 \mathrm{~J} \tag{1}
\end{align*}
$$

Also, $\quad Q_{i b}=\Delta_{i b}+W_{i b}$
$\therefore \quad Q_{i b}=100+50=150 \mathrm{~J}$
From (1) \& (2) $\frac{\mathrm{Q}_{\mathrm{bf}}}{\mathrm{Q}_{\mathrm{ib}}}=\frac{300}{150}=2$

SECTION - C

13. 01732.50

Sol. Probability that a particular nucleus will decay in next 2 hr is

$$
\begin{aligned}
& \frac{\mathrm{N}_{0}-\mathrm{N}}{\mathrm{~N}_{0}}=8 \times 10^{-4} \quad[\mathrm{~N}=\text { surviving population after } 2 \mathrm{hr}] \\
& \mathrm{N}_{0}\left[1-8 \times 10^{-4}\right]=\mathrm{N} \\
& \Rightarrow \quad 1-8 \times 10^{-4}=\mathrm{e}^{-\lambda t} \quad\left[\because \frac{\mathrm{~N}}{\mathrm{~N}_{0}}=\mathrm{e}^{-\lambda t}\right] \\
& \Rightarrow \quad \mathrm{e}^{-\lambda t}=0.9992 \Rightarrow-\lambda \mathrm{t}=\ln (0.9992) \\
& -\frac{\ln 2}{\mathrm{t}_{1 / 2}} \times 2=\ln (0.9992) \quad[\because \mathrm{t}=2 \mathrm{hr}] \\
& \mathrm{t}_{1 / 2}=\frac{2 \ln 2}{\ln (0.9992)} \mathrm{hr} \\
& =\frac{2 \times 0.693}{8 \times 10^{-4}}=1732.5 \mathrm{hr}
\end{aligned}
$$

14. 00003.44

Sol. The cone of rays passing through the hole at a produce an elliptical spot on the floor.
The circular base having diameter BD will get projected on the floor as an ellipse.

$C B=$ major axis $=12 \mathrm{~cm}$
$D B=$ Minor axis $=6 \mathrm{~cm}$
$D B \simeq A B(\theta)=\frac{h \theta}{\sin \phi} \Rightarrow h=(6 \mathrm{~cm}) \frac{\sin \phi}{\phi}$
But $\quad \sin \phi=\frac{\mathrm{DB}}{\mathrm{CB}}=\frac{6}{12}=\frac{1}{2}$
$\therefore \quad h=\frac{(6 \mathrm{~cm})}{2 \times \theta}$
$=\frac{3 \mathrm{~cm} \times 180}{0.5 \times \pi} \quad\left[0.5^{\circ}=\frac{0.5 \times \pi}{180}\right.$ radian $]$
$=344 \mathrm{~cm}$
$=3.44 \mathrm{~m}$
15. 00000.11

Sol. Let acceleration of COM of the spool be a a_{0} towards right, and acceleration of m_{2} be a_{2} downward and that of m_{1} be a_{1} upward

$f=$ friction, $\alpha=$ acceleration of the spool
$2 \mathrm{R} \alpha=\mathrm{a}_{0}$
$\mathrm{R} \alpha+\mathrm{a}_{0}=\mathrm{a}_{2}$
$2 R \alpha+a_{0}=a_{1}$
$\mathrm{T}_{1}-\mathrm{mg}=\mathrm{ma} \mathrm{a}_{1}$
$\mathrm{T}_{1}-\mathrm{mg}=\mathrm{m}\left(\mathrm{a}_{0}+2 \mathrm{R} \alpha\right)=2 \mathrm{ma} \mathrm{a}_{0}$
\ldots (4) $\left[\because R \alpha=\frac{a_{0}}{2}\right]$
$2 m g-T_{2}=2 m a_{2}$
$2 \mathrm{mg}-\mathrm{T}_{2}=2 \mathrm{~m}\left[\mathrm{a}_{2}+\mathrm{R} \alpha\right]=3 \mathrm{ma} \mathrm{a}_{\mathrm{a}}$
$\mathrm{T}_{2}+\mathrm{f}-\mathrm{T}_{1}=3 \mathrm{ma} \mathrm{o}_{0}$
$T_{2} R-T_{1} 2 R-f 2 R=l \alpha$
$\mathrm{T}_{2}-2 \mathrm{~T}_{1}-2 \mathrm{f}=2 \mathrm{mR} \alpha \quad\left[\because \mathrm{I}=2 m \mathrm{R}^{2}\right]$
$\mathrm{T}_{2}-2 \mathrm{~T}_{1}-2 \mathrm{f}=\mathrm{ma}_{0}$
Solving, (4), (5), (6) \& (7) we get $f=-\frac{m g}{3}$
$\because \mathrm{f} \leq \mu \mathrm{N} \quad \therefore \frac{\mathrm{mg}}{3} \leq \mu 3 \mathrm{mg} \quad \therefore \frac{1}{9} \leq \mu$
16. 00035.00

Sol. The bob will experience free fall for a distance of $L=1.8 \mathrm{~m}$.
Speed of the bob just before the string gets taut is
$\mathrm{u}=\sqrt{2 \mathrm{gL}}=\sqrt{2 \times 10 \times 1.8}=6 \mathrm{~m} / \mathrm{s}$

$u_{t}=u \cos 30^{\circ}=\frac{\sqrt{3} u}{2}=3 \sqrt{3} \mathrm{~m} / \mathrm{s}$
$\frac{1}{2} m V^{2}=\frac{1}{2} m u_{t}^{2}+m g \frac{L}{2}$
$\mathrm{V}=3 \sqrt{5} \mathrm{~m} / \mathrm{s}$
$\mathrm{T}=10+\frac{45}{1.8}=35 \mathrm{~N}$
17. 00002.45

$\mathrm{s}=\Omega \mathrm{R}^{2}=2 \pi \mathrm{R}^{2}(1-\cos \theta)$
If $s=(0.2)\left(2 \pi R^{2}\right)$ then
$0.2=1-\cos \theta$
$\Rightarrow \quad \cos \theta=0.8 \Rightarrow \theta=37^{\circ}$

$N=m g \cos \theta-m \omega^{2} r \sin \theta$
$\mu\left(m g \cos \theta-m \omega^{2} r \sin \theta\right)=m g \sin \theta+m \omega^{2} r \cos \theta$
$\therefore \frac{\mu g \sin \theta+\omega^{2} r \cos \theta}{g \cos \theta-\omega^{2} r \sin \theta}$
$=\frac{10 \times 0.6+10^{2} \times 0.06 \times 0.8}{10 \times 0.8-10^{2} \times 0.06 \times 0.6}=\frac{0.6+0.48}{0.8-0.36}=2.45$
18. 00005.77

Sol. Wall AB of the wedge is vertical. For ball to remain in contact with the wedge the velocity component of the ball perpendicular to the wall $A B$ must be equal to velocity component of the wedge in horizontal direction (i.e., perpendicular to wall AB)
$\therefore 10 \cos 60^{\circ}=\mathrm{V} \cos 30^{\circ}$
$5=\mathrm{V} \frac{\sqrt{3}}{2}$

$V=\frac{10}{\sqrt{3}} \mathrm{~m} / \mathrm{s}$

Chemistry

PART - II

SECTION - A

19. A, B, C, D

Sol. (A) 2-D-hexagonal packing
Packing efficiency $=\frac{\pi R^{2}+6 \times \frac{\pi R^{2}}{3}}{6 \times \frac{\sqrt{3}(2 R)^{3}}{4}}$
(B) simple cubic $=\frac{1 \times \frac{4}{3} \pi R^{3}}{a^{3}}$
$a=2 R$
H.C.P. $=(3 D)=\frac{6 \times \frac{4}{3} \pi R^{3}}{24 \sqrt{2} R^{3}}$
F.C.C. $=(3 D)=\frac{4 \times \frac{4}{3} \pi R^{3}}{(2 \sqrt{2} R)^{3}}$
20. A, C, D

Sol. $\quad K E=\frac{3}{2} R T(1$ mole $) U_{\text {rms }}=\sqrt{\frac{3 R T}{M_{w}}}$ $d=\frac{P M_{w}}{R T}$
21. A, B, C, D

Sol. (A)

(B)

(C)

(D)

22. A, B, C

Sol. Factual
23. A, C

Sol. $\quad \mathrm{H}_{2} \mathrm{~A} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HA}^{-} ; \quad \because \mathrm{y}$ is very less so $\mathrm{x}+\underset{x-y=\mathrm{y}}{\mathrm{y}} \approx \mathrm{x} \quad \therefore \mathrm{K}_{\mathrm{a}_{1}}=\frac{\mathrm{x}^{2}}{\mathrm{c}-\mathrm{x}}$
at equilibrium $\quad C-X \quad x+y \quad x-y \quad K_{a_{2}}=y=10^{-12} ; \mathrm{pK}_{\mathrm{a}_{2}}=12$
$\mathrm{HA}^{-1} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{2-}$
at equilibrium $\quad x-y \quad x+y \quad y$
$\mathrm{pK}_{\mathrm{a}_{2}}-\mathrm{pK}_{\mathrm{a}_{1}}=12-5=7$
$\mathrm{pH}=\frac{1}{2}\left[\mathrm{pK}_{\mathrm{a}_{1}}-\log \mathrm{c}\right]$
$3=\frac{1}{2}\left[p K_{a_{1}}+1\right] \quad \mathrm{pK}_{\mathrm{a}_{1}}=5$
24. C

Sol. As ΔV is positive w is negative
$W=-P \Delta V$
So work is done on the system.

SECTION - B

25. 3

Sol. Fraction of edge unoccupied $=\frac{a-2 R}{a}$

$$
\begin{aligned}
& \mathrm{a}=2 \sqrt{2} R \quad \mathrm{X}=\frac{2(\sqrt{2}-1)}{2 \sqrt{2}} \\
& \mathrm{X}=\frac{0.414}{1.414}=0.293 \\
& Z=\frac{X}{0.097}=\frac{0.293}{0.097}=3
\end{aligned}
$$

26. 00007.00

Sol. alk. $\mathrm{KMnO}_{4} \quad \& \quad \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ will not
React with kl to give I_{2}
27. 8

Sol. Process $A C=$ polytropic process $(P=K V)$
Molar Heat capacity $c_{m}=c_{V}+R / 2=2 R$
Process AB = Isobaric
$\mathrm{c}_{\mathrm{m}}=\mathrm{c}_{\mathrm{p}}=5 \mathrm{R} / 2$
$\frac{q_{A C}}{q_{A B}}=\frac{\int_{T_{A}}^{T_{C}} n C_{m} \cdot d T}{\int_{T_{A}}^{T_{B}} n \cdot C_{p, m^{\prime}} d T}=\frac{2 R}{\frac{5}{2} R}=0.8$
$\frac{q_{A C}}{q_{A B}}=\times 10=0.8 \times 10=8$
28. 3

Sol. $\mathrm{Ca}, \mathrm{CaH}_{2}$ and produce H_{2} gas with cold water.
29. 4

Sol. $\underset{\text { (Metal oxide basic) }}{\mathrm{MO}}+\underset{\text { (Acedic) }}{\mathrm{SiO}_{2}} \rightarrow \underset{\text { (slag) }}{\mathrm{MSiO}_{3}}$
30. 4

Sol.

SECTION - C
31. 00024.06

Sol. $\mathrm{k}=\frac{2.303}{10} \log \frac{0.04}{0.03}$
$t_{1 / 2}=\frac{0.693}{K}$
32. -0.24

Sol. $\quad-0.12-\frac{0.0591}{2} \log \left(\frac{1}{x}\right)=-0.24$
$\log \frac{1}{x}=\frac{0.12 \times 2}{0.06}=4$
$x=10^{-4}$
33. 00000.10

Sol. $\alpha=\sqrt{\frac{\mathrm{Ka}}{\mathrm{C}}}$
34. $\quad 00000.50$

Sol. $\frac{\alpha_{1}}{\alpha_{2}}=\sqrt{\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}} \Rightarrow \frac{0.01}{\alpha_{2}}=\sqrt{\frac{0.4}{0.1}}$
$\alpha_{2}=0.005$ or $\% \alpha_{2}=0.5$
35. 27419.25

Sol. $\quad \overline{\mathrm{V}}=\mathrm{R} \times\left[\frac{1}{2^{2}}-\frac{1}{\alpha^{2}}\right]$
36. 00004.52

Sol. $\quad \mathrm{K}_{\mathrm{c}}=\frac{\text { [complex }]}{\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right][\text { glycerine }]}$.

Mathematics

PART - III

SECTION - A

37. A, D

Sol. $\quad\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{2 n} x^{2 n}$
$\Rightarrow \quad a_{0}+a_{2}+a_{4} \ldots=\frac{3^{n}+1}{2}$
$a_{1}+a_{3}+a_{5} \ldots=\frac{3^{n}-1}{2}$
Put $\quad x=i$ in equation (1) where $i=\sqrt{-1}$
If $\quad n=4 m+1$
$\Rightarrow \quad a_{1}-a_{3}+a_{5} \ldots=1$
$a_{0}-a_{2}+a_{4} \ldots=0$
So, $\quad a_{1}+a_{5}+a_{9} \ldots=\frac{3^{n}+1}{4}=S_{2}$
$a_{3}+a_{7}+a_{11} \ldots=\frac{3^{n}-3}{4}=S_{4}$
Similarly if $n=4 m+3$
Then, $\quad S_{2}=\frac{3^{n}-3}{4}$ and $S_{4}=\frac{3^{n}+1}{4}$
38. A, B, C, D

Sol. $\quad f_{1}(x)=\frac{\pi}{2}-\sin ^{2} x, f_{2}(x)=\frac{\pi}{2}-\cos ^{2} x$
$f_{3}(x)=\frac{\pi}{2}-\cos ^{2} x, f_{4}(x)=\frac{\pi}{2}-\sin ^{2} x$
39. A, B

Sol. $\quad c^{2}=a^{2}+b^{2}-2 a b \cos C$
$=(a-b)^{2}+2 a b(1-\cos C)$
$\Delta=\frac{1}{2} \mathrm{absin} \mathrm{C}$
or $2 \mathrm{ab}=\frac{4 \Delta}{\sin C}$
here $c^{2}=(a-b)^{2}+4 \Delta\left(\frac{1-\cos C}{\sin C}\right)$
$=(a-b)^{2}+4 \Delta \tan \frac{C}{2}$
$4 \Delta \tan \frac{C}{2}$ is constant so for c^{2} to be minimum $\mathrm{a}=\mathrm{b}$ thus $2 \mathrm{ab}=2 a^{2}=\frac{4 \Delta}{\sin C}$
$\Rightarrow \mathrm{a}=\mathrm{b}=\sqrt{\frac{2 \Delta}{\sin \mathrm{C}}}$.
40. B, D

Sol. $\quad f(x)=x^{5}-10 a^{3} x^{2}+b^{4} x+c^{5}$
$f^{\prime}(x)=5 x^{4}-20 a^{3} x+b^{4}$
$f^{\prime \prime}(x)=20 x^{3}-20 a^{3}$
If $x=\alpha$ be a root that is repeated three times,
$\Rightarrow \mathrm{f}^{\prime \prime}(\alpha)=0, \mathrm{f}^{\prime}(\alpha)=0, \mathrm{f}(\alpha)=0$
$\Rightarrow \alpha=a, 5 a^{4}-20 a^{4}+b^{4}=0, a^{5}-10 a^{5}+a b^{4}+c^{5}=0$
$\Rightarrow \alpha=a, b^{4}=15 a^{4}, c^{5}+a b^{4}-9 a^{5}=0 \Rightarrow c^{5}+15 a^{5}-9 a^{5} \Rightarrow 6 a^{5}+c^{5}=0$.
41. A, D

Sol. Since $\int_{a}^{b} f(x) d x=(b-a) \int_{0}^{1} f\{(b-a) x+a\} d x$,
$\int_{1}^{2} \sin x^{2} d x=\int_{0}^{1} \sin (x+1)^{2} d x=\int_{0}^{1} \sin \left(x^{2}+2 x+1\right) d x$
$\int_{-4}^{4} \cos x^{2} d x=8 \int_{0}^{1} \cos (8 x-4)^{2} d x$
$=8 \int_{1}^{0} \cos 16(2 x-1)^{2} d x$.
42. B, C

Sol. $\quad f(x)=0$
If $\sin x \neq \pm 1 \quad\left(1 \leq 1+\sin ^{2} x<2, \sin ^{2}=2\right)$
$=\pi / 3$ If $\sin x= \pm 1$
So $f(x)$ is not continuous at the points, where $\sin x= \pm 1$ i.e. x is an odd multiple of $\pi / 2$

SECTION - B

43. 6

Sol. $A B=22=A C$
Now $A P+P R+A R=(A P+P Q)+(Q R+A R)$
$=A B+A C=44$.
44. 3

Sol. $\quad|z|+|z-1|+|2 z-3|=|z|+|z-1|+|3-2 z| \geq|z+z-1+3-2 z|=2$
$\therefore \quad|z|+|z-1|+|2 z-3| \geq 2$
$\therefore \quad \lambda=2$
then $2[x]+3=3[x-\lambda]$
$=3[x-2]$
$\Rightarrow \quad 2[x]+3=3([x]-2)$
or $\quad[x]=9$, then $y=2.9+3=21$
$\therefore \quad[x+y]=[x+21]=[x]+21=9+21=30$
45. 2

Sol. No. of fights $={ }^{24} C_{2}-{ }^{x} C_{2}-{ }^{x+1} C_{2}-23-2 x C_{2}$
$f(x)=-3 x^{2}+45 x+23$.
$f(x)=0 \Rightarrow x=\frac{15}{2}=7.5$
but x can't be a fraction.
So $x=7$ (nearest integer)
$\therefore \mathrm{f}(\mathrm{x})=191$ Ans.
46. 2

Sol. $\quad k=1 \quad \frac{1}{3}\left({ }^{1} C_{0}+{ }^{1} C_{0}\right)=\frac{1}{3} \times 2=\frac{2}{3}$

$$
\begin{array}{ll}
k=2 & \frac{1}{3^{2}}\left({ }^{2} C_{0}+{ }^{2} C_{1}+{ }^{2} C_{2}\right)=\frac{2^{2}}{3^{2}}=\left(\frac{2}{3}\right)^{2} \\
k=3 & \frac{1}{3^{3}}\left({ }^{3} C_{0}+{ }^{3} C_{1}+{ }^{3} C_{2}+{ }^{3} C_{3}\right)=\frac{2^{3}}{3^{3}}=\left(\frac{2}{3}\right)^{3}
\end{array}
$$

\therefore Reg. Sum $=\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+\ldots \ldots . . \infty$

$$
=\frac{\frac{2}{3}}{1-\frac{2}{3}}=2
$$

47. 4

Sol. equation has four positive real root.

$$
\begin{aligned}
& \Rightarrow \quad \frac{\frac{1}{x_{1}}+\frac{2}{x_{2}}+\frac{3}{x_{3}}+\frac{4}{x_{4}}}{4} \geq\left(\frac{24}{x_{1}, x_{2}, x_{3}, x_{4}}\right)^{1 / 4}=2 . \\
& \Rightarrow \quad \frac{1}{x_{1}}+\frac{2}{x_{2}}=\frac{2}{x_{3}}=\frac{4}{x_{4}}=k \\
& \Rightarrow \quad k=2 \quad \therefore \text { roots are } \frac{1}{2}, 1, \frac{3}{2} \text { and } 2 \\
& \Rightarrow \quad \frac{x_{4}}{x_{1}}=4
\end{aligned}
$$

48. 2

Sol. Since $\alpha 2-2 \alpha+3=0 \& \beta 2-2 \beta+3=0$
$\therefore \quad \alpha 3-3 \alpha 2+5 \alpha-2=\alpha 3-2 \alpha 2+3 \alpha-\alpha 2+2 \alpha-3+1$
$=\alpha(\alpha 2-2 \alpha+3)-(\alpha 2-2 \alpha+3)+1=1$
And $\beta 3-\beta 2+\beta+5=\beta 3-2 \beta 2+3 \beta+\beta 2-2 \beta+5=\beta(\beta 2-2 \beta+3)+(\beta 2-2 \beta+3)+2=2$
So the ref. equation is
$\mathrm{x} 2-(2+1) \mathrm{x}+2.1=0$
$x 2-3 x+2=0$

SECTION - C

49. 58060.80

Sol. 10 IIT students $T_{1}, T_{2}, \ldots . . \mathrm{T}_{10}$ can be arranged in $10!$ ways. Now the number of ways in which two PET student can be placed will be equal to the number of ways in which 3 consecutive IIT students can be taken i.e. in 8 ways and can be arranged in two ways P (10!) (8) (2 !).
Alternatively 3 IIT students can be selected in ${ }^{10} \mathrm{C}_{3}$ ways. Now each selection of 3 IIT and 2 PET students in $P_{1} T_{1} T_{2} T_{3} P_{2}$ can be arranged in (2!) (3!) ways. Call this box X. Now this X and the remaining IIT students can be arranged in 8 ! ways
\Rightarrow Total ways $\left.{ }^{10} \mathrm{C}_{3}(2!)(3!)(8!)\right]$
50. 08855.00

Sol. $\quad x+y+z+w<25$

$$
\text { let } \quad \begin{array}{lll}
\mathrm{x}+\mathrm{y}+\mathrm{z}+\mathrm{w}+\mathrm{a}=25 & \text { such that } \mathrm{a}>0 \\
\mathrm{x}=-1+\mathrm{t}_{1} & \therefore & \mathrm{t}_{1} \geq 0 \\
\mathrm{y}=2+\mathrm{t}_{2} & \therefore & \mathrm{t}_{2} \geq 0 \\
\mathrm{z}=\mathrm{t}_{3} & \therefore & \mathrm{t}_{3} \geq 0 \\
\mathrm{w}=4+\mathrm{t}_{4} & \therefore & \mathrm{t}_{4} \geq 0 \\
\mathrm{a}=1+\mathrm{t}_{5} & \therefore & \mathrm{t}_{5} \geq 0
\end{array}
$$

put in equation (i)

$$
\begin{aligned}
& \left(-1+t_{1}\right)+\left(2+t_{2}\right)+t_{3}+\left(4+t_{4}\right)+\left(1+t_{5}\right)=25 \\
& t_{1}+t_{2}+t_{3}+t_{4}+t_{5}=19
\end{aligned}
$$

by fictitious partition solution ${ }^{19+5-1} C_{19}={ }^{23} C_{19}$
51. 01002.00

Sol. $\quad x^{3}-3 x y^{2}=2005 \Rightarrow\left[\left(\frac{x}{y}\right)^{3}-3\left(\frac{x}{y}\right)=\frac{2005}{y^{3}}\right] \times 2004$
$y^{3}-3 x^{2} y=2004 \Rightarrow\left[1-3\left(\frac{x}{y}\right)^{2}=\frac{2004}{y^{3}}\right] \times 2004$
Subtract (1) \& (2) \& put $\frac{x}{y}=t$
$2004 t^{3}+6015 t^{2}-6012 t-2005=0 \underset{\mathrm{t}_{3}}{\underset{\mathrm{t}_{2}}{\mathrm{t}_{1}}}$
$\frac{y_{1} \cdot y_{2} \cdot y_{2}}{\left(y_{1}-x_{1}\right)\left(y_{2}-x_{2}\right)\left(y_{3}-y_{3}\right)}=\frac{1}{\left(1-t_{1}\right)\left(1-t_{2}\right)\left(1-t_{3}\right)}$
$=\frac{1}{1+\left(t_{1} t_{2}+t_{2} t_{3}+t_{3} t_{1}\right)-\left(t_{1}+t_{2}+t_{3}\right)-t_{1} t_{2} t_{3}}$
put values
$=1002$
52. 00010.20

Sol. $\quad\left(1-\frac{2}{3}\right)^{-\frac{1}{2}}=1+\frac{1}{2} \cdot \frac{2}{3}+\frac{\frac{1}{2} \cdot \frac{3}{2}}{\underline{2}} \cdot\left(\frac{2}{3}\right)^{2}+\frac{\frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2}\left(\frac{2}{3}\right)^{3}}{\boxed{3}}$
$\Rightarrow\left(\frac{1}{3}\right)^{-\frac{1}{2}}-=\frac{1}{3}+\frac{1.3}{(3)^{2} \underline{2}}+\frac{1.3 .5}{(3)^{3} \underline{3}}+\ldots \ldots \ldots \ldots$
$\sqrt{3}-1=z \quad \Rightarrow z^{2}+2 z-2=0$
$\because \quad z=\frac{-2 \pm \sqrt{4+8}}{2}$
$\because \quad z=-2 \pm \sqrt{3}$, but $z \neq-1-\sqrt{3}$
53. 00003.50

Sol. Let $\mathrm{f}(\mathrm{x})=\mathrm{ax}+\mathrm{bx}+\mathrm{c}, \quad \because \int_{\alpha}^{\beta} f(x) d x>0 \quad \forall \alpha, \beta \in R$

$$
a, b, c \in I^{+} \quad f(x)>0 \Rightarrow D<0
$$

$f^{\prime \prime}(x)=2 a \quad \Rightarrow g(t)=2 a\left(a t^{2}+b t+c\right)=2 a^{2} t^{2}+2 a b t+2 a c$.
$g(0)=2 a c=12 \Rightarrow \quad a c=6$.
$a=6, \quad c=1$
$\left.\begin{array}{ll}a=1 & c=6 \\ a=3 & c=2 \\ a=2 & c=3\end{array}\right] \Rightarrow b^{2}<24 ; \quad b=1,2,3,4$
$\therefore 16$ quadratic are possible
54. 00001.00

Sol. Let $f(x)=a x^{2}+(a-2) x-2$ $f(0)=-2$
and $\quad f(-1)=0$
Since the quadratic expression is negative for exactly two integral values

$$
\begin{array}{ll}
\Rightarrow & f(1)<0 \\
\Rightarrow & a+a-2-2<0 \\
\Rightarrow & a<2 \\
\therefore & a \in[1,2)
\end{array}
$$

$$
\text { and } \quad f(2) \geq 0
$$

$$
\text { and } \quad 4 a+2 a-4-2 \geq 0
$$

$$
\text { and } \quad a \geq 1
$$

