Light - Reflection And Refraction

Spherical Mirror

- Centre of curvature: Centre of the sphere of which the spherical mirror is a part

- Pole: It is the midpoint of the aperture of the spherical mirror or mirror centre.

Concave mirror

Convex mirror

- Focus: Where parallel rays (parallel to the principal axis) meet or appear to meet after reflection.
- Principal Axis: The imaginary line that runs through the pole and the center of curvature of a spherical mirror.
- Distance of focus from the pole is half the radius of curvature.

Two types of spherical mirrors

1. The image formed by a convex mirror is erect and diminished. It is formed behind the mirror.
2. The image formed by a concave mirror can be erect as well as inverted, diminished as well as magnified, behind the mirror as well as in front of the mirror, depending on the distance of the object from the mirror.
3. The image that can be obtained on a screen is called real image. The image that cannot be obtained on a screen is called virtual image.
4. The image formed by a convex mirror is always virtual. The image formed by a concave mirror can be real as well as virtual.
5. Concave mirror is used as the reflector of a torch, dentist mirror, etc. It is also used in solar furnaces.
6. Convex mirror is used as a rear view mirror in vehicles. It also used road safety mirrors.

- Sign Conventions for Spherical Mirrors:

- Mirror formula
$\frac{1}{f}=\frac{1}{v}+\frac{1}{u}$
For concave mirror, $f=-\mathrm{ve}$ and for convex mirror, $f=+\mathrm{ve}$
- Magnification

Magnification $=-v u-v u$
For real image, $\quad v=-\mathrm{ve}$
Virtual image, $v=+\mathrm{ve}$

- Refraction Laws

- Refractive index (RI)

$\mu 21$ (μ of 2 w.r.t 1)=Velocity of light in medium 1Velocity of light in medium $2=\mathrm{v} 1 \mathrm{v} 2 \mu 12(\mu$ of 2 w.r.t 1)=Velocity of light in medium 1Velocity of light in medium 2=v1v2
(Absolute RI when medium $1=$ Vacuum)
(Light speed in vacuum is $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)

Medium (Optically denser) $\mu \mu>1$

- Differences between a spherical mirror and a lens:

Spherical mirror	Spherical lens
Image is formed by reflection of light.	Image is formed by refraction of light.
A spherical mirror has only one focus.	A spherical lens has two foci.
The centre of the spherical mirror is	The centre of the spherical lens is termed as its optical centre.
termed as its pole.	

- Centre of curvature = Centre of the sphere of which the lens surfaces is a part of (Same as Spherical mirror)
- Optical centre is a point at the centre of the lens. It always lies inside the lens and not on the surface
- The straight line joining the two centers of curvature and the optical centre is called the principal axis of the lens.
- Focus = Where parallel rays meet after refraction (On principal axis = principal focus)
- Convex lens and Image
- Virtual and erect images - when the object is placed between F1 and the optical centre (Magnifying glass)
- Image size = object size when object at 2F (= Centre of curvature)
- Concave lens and Image
- Virtual and erect at all object positions

- Lens Formula

For concave lens $f=-$ ve
convex lens $f=+$ ve

- Magnification
$m=\frac{\mathrm{Im} \text { age height }}{\text { Object height }}=\frac{v}{u}$ (Same as mirror)

- Lens power

$\mathrm{P}($ Unit dioptre $)=\frac{1}{f(\operatorname{in} m)} f=-$ ve for concave

- Sigh Convention for Lenses:

- Lens Formula
$\frac{1}{f}=\frac{1}{v}-\frac{1}{u}$
For concave lens $f=-$ ve convex lens $f=+$ ve
- Magnification

$$
m=\frac{\text { Image height }}{\text { Obhect height }}=\frac{v}{u} \text { (Same as mirror) }
$$

- Lens power: Power of lens is the reciprocal of its focal length.
$\mathrm{P}($ Unit dioptre $)=\frac{1}{f(\operatorname{in} m)}=-$ ve for concave and + ve for convex lens.

