Probability

- Experimental Probability: The probability obtained from the result of an experiment when we actually perform the experiment is called experimental (or empirical) probability.
- Theoretical Probability: The probability we find through the theoretical approach without actually performing the experiment is called theoretical probability.
- The theoretical probability (or classical probability) of an event E , is denoted by $\mathrm{P}(\mathrm{E})$ and is defined as

$$
P(E)=\frac{\text { Number of outcom esf avour able toE }}{\text { Number of all possible outcomes of the experiment }}
$$

- Experimental probability may or may not be equal to the theoretical probability.
- Formula of theoretical probability can be used to find the probabilities of various events.

Example 1: A dice is thrown once. What is the probability of getting 1 on the dice?
Solution: When a dice is thrown once, the possible outcomes are 1, 2, 3, 4, 5, 6 .
Let A be the event of getting 1 on the dice.
$\therefore P(A)=\frac{\text { Number of outcomes } f \text { avour ableto } \mathrm{A}}{\text { Number of all possible outcomes }}=\frac{1}{6}$
Example 2: A box contains 3 white, 5 green, and 6 red balls. A ball is drawn at random out of the box. Find the probability of drawing a red ball.
Solution: Total number of balls $=3+5+6=14$
Therefore, total number of possible outcomes $=14$
Let E be the event of drawing a red ball.
Number of outcomes favourable to $\mathrm{E}=6$
$\therefore P(E)=\frac{\text { Number of outcom es f avolu able to } \mathrm{E}}{\text { Number of all possible outcom es }}=\frac{6}{14}=\frac{3}{7}$
Example 3: A card is drawn at random from a deck of 52 cards. Find the probability that the card drawn is,

- A black card
- An ace
- Neither a black card nor an ace

Solution:

Since there are 52 cards in a deck, the number of all possible outcomes is 52 .
\bullet

- Number of black cards in the deck $=26$

Therefore, the probability that the drawn card is black $=\frac{26}{52}=\frac{1}{2}$

- Number of aces in the deck $=4$

Therefore, the probability that the drawn card is an ace $=\frac{4}{52}=\frac{1}{13}$
-

- Number of cards which are neither black nor an ace $=26-2=24$

Therefore, the probability that the drawn card is neither black nor an ace $=\frac{24}{52}=\frac{6}{13}$

- Complementary events

For an event E such that $0 \leq P(E) \leq 1$ of an experiment, the event \bar{E} represents 'not E', which is called the complement of the event E .
We say, E and \bar{E} are complementary events.
$P(E)+P(\bar{E})=1$
$\Rightarrow P(\bar{E})=1-P(E)$

Example:

A pair of dice is thrown once. Find the probability of getting a different number on each die.

Solution:

When a pair of dice is thrown, the possible outcomes of the experiment can be listed as:

	1	2	3	4	5	6
1	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
2	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
3	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
4	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
5	$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
6	$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6))$

The number of all possible outcomes $=6 \times 6=36$
Let E be the event of getting the same number on each die.
Then, \bar{E} is the event of getting different numbers on each die.
Now, the number of outcomes favourable to E is 6 .

$$
\therefore P(\bar{E})=1-P(E)=1-\frac{6}{36}=\frac{5}{6}
$$

Thus, the required probability is $\frac{5}{6}$.

