• Euclid's Division Lemma

For any given positive integers *a* and *b*, there exists unique integers *q* and *r* such that a = bq + r where $0 \le r < b$

Note: If *b* divides *a*, then r = 0

Example 1:

For a = 15, b = 3, it can be observed that $15 = 3 \times 5 + 0$ Here, q = 5 and r = 0If b divides a, then 0 < r < b

Example 2:

For a = 20, b = 6, it can be observed that $20 = 6 \times 3 + 2$ Here, q = 6, r = 2, 0 < 2 < 6

• Euclid's division algorithm

Euclid's division algorithm is a series of well-defined steps based on "Euclid's division lemma", to give a procedure for calculating problems.

Steps for finding HCF of two positive integers *a* and *b* (a > b) by using Euclid's division algorithm:

- **Step 1:** Applying Euclid's division lemma to *a* and *b* to find whole numbers *q* and *r*, such that a = bq + r, $0 \le r < b$
- **Step 2:** If r = 0, then HCF (a, b) = b
 - If $r \neq 0$, then again apply division lemma to b and r
- **Step 3:** Continue the same procedure till the remainder is 0. The divisor at this stage will be the HCF of *a* and *b*.

Note: HCF (a, b) = HCF (b, r)

Example:

Find the HCF of 48 and 88.

Solution:

Take a = 88, b = 48Applying Euclid's division lemma, we get $88 = 48 \times 1 + 40$ (Here, $0 \le 40 < 48$) $48 = 40 \times 1 + 8$ (Here, $0 \le 8 < 40$) $40 = 8 \times 5 + 0$ (Here, r = 0) HCF (48, 88) = 8

• For any positive integer a, b, HCF $(a, b) \times$ LCM $(a, b) = a \times b$

Example 1:

Find the LCM of 315 and 360 by the prime factorisation method. Hence, find their HCF.

Solution:

 $315 = 3 \times 3 \times 5 \times 7 = 3^{2} \times 5 \times 7$ $360 = 2 \times 2 \times 2 \times 3 \times 3 \times 5 = 2^{3} \times 3^{2} \times 5$ LCM = $3^{2} \times 5 \times 7 \times 2^{3} = 2520$ \therefore HCF(315, 360) = $\frac{315 \times 360}{LCM(315, 360)} = \frac{315 \times 360}{2520} = 45$

Example 2:

Find the HCF of 300, 360 and 240 by the prime factorisation method.

Solution:

 $300 = 2^{2} \times 3 \times 5^{2}$ $360 = 2^{3} \times 3^{2} \times 5$ $240 = 2^{4} \times 3 \times 5$ HCF (300, 360, 240) = 2² × 3 × 5 = 60

• Euclid's Division Lemma

For any given positive integers *a* and *b*, there exists unique integers *q* and *r* such that a = bq + r where $0 \le r < b$

Note: If *b* divides *a*, then r = 0

Example 1:

For a = 15, b = 3, it can be observed that $15 = 3 \times 5 + 0$ Here, q = 5 and r = 0If b divides a, then 0 < r < b

Example 2:

For a = 20, b = 6, it can be observed that $20 = 6 \times 3 + 2$ Here, q = 6, r = 2, 0 < 2 < 6

• Euclid's division algorithm

Euclid's division algorithm is a series of well-defined steps based on "Euclid's division lemma", to give a procedure for calculating problems.

Steps for finding HCF of two positive integers *a* and *b* (a > b) by using Euclid's division algorithm:

```
Step 1: Applying Euclid's division lemma to a and b to find whole numbers q and r, such that a = bq + r, 0 \le r < b
```

Step 2: If r = 0, then HCF (a, b) = b

If $r \neq 0$, then again apply division lemma to b and r

Step 3: Continue the same procedure till the remainder is 0. The divisor at this stage will be the HCF of *a* and *b*.

Note: HCF (a, b) = HCF (b, r)

Example:

Find the HCF of 48 and 88.

Solution:

Take a = 88, b = 48Applying Euclid's division lemma, we get $88 = 48 \times 1 + 40$ (Here, $0 \le 40 < 48$) $48 = 40 \times 1 + 8$ (Here, $0 \le 8 < 40$) $40 = 8 \times 5 + 0$ (Here, r = 0)HCF (48, 88) = 8

• Using Euclid's division lemma to prove mathematical relationships **Popult 1**.

Result 1:

Every positive even integer is of the form 2q, while every positive odd integer is of the form 2q + 1, where q is some integer.

Proof:

Let *a* be any given positive integer. Take b = 2By applying Euclid's division lemma, we have a = 2q + r where $0 \le r < 2$ As $0 \le r < 2$, either r = 0 or r = 1If r = 0, then a = 2q, which tells us that *a* is an even integer. If r = 1, then a = 2q + 1It is known that every positive integer is either even or odd. Therefore, a positive odd integer is of the form 2q + 1.

Result 2:

Any positive integer is of the form 3q, 3q + 1 or 3q + 2, where q is an integer. **Proof:**

Let *a* be any positive integer. Take b = 3Applying Euclid's division lemma, we have a = 3q + r, where $0 \le r < 3$ and q is an integer Now, $0 \le r < 3 \bowtie r = 0, 1$, or 2 $\therefore a = 3q + r$ $\Rightarrow a = 3q + 0, a = 3q + 1, a = 3q + 2$

Thus, a = 3q or a = 3q + 1 or a = 3q + 2, where q is an integer.

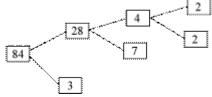
• Fundamental theorem of arithmetic states that very composite number can be uniquely expressed (factorised) as a product of primes apart from the order in which the prime factors occur.

Example: 1260 can be uniquely factorised as

2	1260
2	630
3	315
3	105
5	35
	7

 $1260 = 2 \times 2 \times 3 \times 3 \times 5 \times 7$

Example: Factor tree of 84



 $84 = 2 \times 2 \times 3 \times 7$

• For any positive integer a, b, HCF $(a, b) \times$ LCM $(a, b) = a \times b$

Example 1:

Find the LCM of 315 and 360 by the prime factorisation method. Hence, find their HCF.

Solution:

 $315 = 3 \times 3 \times 5 \times 7 = 3^{2} \times 5 \times 7$ $360 = 2 \times 2 \times 2 \times 3 \times 3 \times 5 = 2^{3} \times 3^{2} \times 5$ $LCM = 3^{2} \times 5 \times 7 \times 2^{3} = 2520$ $\therefore HCF(315, 360) = \frac{315 \times 360}{LCM(315, 360)} = \frac{315 \times 360}{2520} = 45$

Example 2:

Find the HCF of 300, 360 and 240 by the prime factorisation method.

Solution: $300 = 2^2 \times 3 \times 5^2$ $360 = 2^{3} \times 3^{2} \times 5$ 240 = 2⁴ × 3 × 5 HCF (300, 360, 240) = 2² × 3 × 5 = 60

• According to fundamental theorem of arithmetic, a number can be represented as the product of primes having a unique factorisation.

Example:

Check whether 15^n in divisible by 10 or not for any natural number *n*. Justify your answer.

Solution:

A number is divisible by 10 if it is divisible by both 2 and 5. $15^n = (3 \cdot 5)^n$ 3 and 5 are the only primes that occur in the factorisation of 15^n By uniqueness of fundamental theorem of arithmetic, there is no other prime except 3 and 5 in the factorisation of 15^n . 2 does not occur in the factorisation of 15^n . Hence, 15^n is not divisible by 10.

• Every number of the form \sqrt{p} , where *p* is a prime number is called an irrational number. For example, $\sqrt{3}$, $\sqrt{11}$, $\sqrt{12}$ etc.

Theorem: If a prime number p divides a^2 , then p divides a, where a is a positive integer.

Example:

Prove that $\sqrt{7}$ is an irrational number.

Solution:

If possible, suppose $\sqrt{7}$ is a rational number. Then, $\sqrt{7} = \frac{p}{q}$, where p, q are integers, $q \neq 0$. If HCF $(p, q) \neq 1$, then by dividing p and q by HCF(p, q), $\sqrt{7}$ can be reduced as $\sqrt{7} = \frac{a}{b}$ where HCF (a, b) = 1 ... (1) $\Rightarrow \sqrt{7b} = a$ $\Rightarrow 7b^2 = a^2$ $\Rightarrow a^2$ is divisible by 7 $\Rightarrow a$ is divisible by 7 (2) $\Rightarrow a = 7c$, where c is an integer $\therefore \sqrt{7c} = b$ $\Rightarrow 7b^2 = 49c^2$ $\Rightarrow b^2 = 7c^2$ $\Rightarrow b^{2} \text{ is divisible by 7}$ $\Rightarrow b \text{ is divisible by 7} \dots (3)$ From (2) and (3), 7 is a common factor of*a*and*b*. which contradicts (1)

 $\therefore \sqrt{7}$ is an irrational number.

Example:

Show that $\sqrt{12} - 6$ is an irrational number.

Solution:

If possible, suppose $\sqrt{12} - 6$ is a rational number. Then $\sqrt{12} - 6 = \frac{p}{q}$ for some integers $p, q (q^{-1} 0)$ Now, $\sqrt{12} - 6 = \frac{p}{q}$ $\Rightarrow 2\sqrt{3} = \frac{p}{q} + 6$ $\Rightarrow \sqrt{3} = \frac{1}{2} \left(\frac{p}{q} + 6\right)$ As p, q, 6 and 2 are integers, $\frac{1}{2} \left(\frac{p}{q} + 6\right)$ is rational number, so is $\sqrt{3}$. This conclusion contradicts the fact that $\sqrt{3}$ is irretional

This conclusion contradicts the fact that $\sqrt{3}$ is irrational. Thus, $\sqrt{12}^{-6}$ is an irrational number.

• Decimal expansion of a rational number can be of two types:

(i) Terminating (ii) Non-terminating and repetitive In order to find decimal expansion of rational numbers we use long division method. For example, to find the decimal expansion of $\frac{1237}{25}$. We perform the long division of 1237 by 25.

	49.48
25)	1237.00
_	100
	237
	225
	120
	100
	200
	200
	0

1237

Hence, the decimal expansion of 25 is 49.48. Since the remainder is obtained as zero, the decimal number is terminating.

• If x is a rational number with terminating decimal expansion then it can be expressed in $\frac{p}{2}$

the q form, where p and q are co-prime (the HCF of p and q is 1) and the prime factorisation of q is of the form $2^n 5^m$, where n and m are non-negative integers.

- \underline{p}
- Let x = q be any rational number.
- i. If the prime factorization of q is of the form $2^m 5^n$, where m and n are non-negative integers, then x has a terminating decimal expansion.
- ii. If the prime factorisation of q is not of the form $2^m 5^n$, where m and n are non-negative integers, then x has a non-terminating and repetitive decimal expansion.

For example, $\overline{1600} = \overline{2^6 \times 5^2}$ has the denominator in the form $2^n 5^m$, where n = 6 and m = 2 are non-negative integers. So, it has a terminating decimal expansion.

$$\frac{723}{2} = \frac{3 \times 241}{2}$$

 $392 \quad 2^3 \times 7^2$ has the denominator not in the form $2^n 5^m$, where *n* and *m* are non-negative integers. So, it has a non-terminating decimal expansion.