8. Solid State

Unit Cell	Corners	Body	Face	Total No. of atoms per unit cell
SCC	$1/8 \times 8 = 1$			1
BCC	$1/8 \times 8 = 1$	1		2
FCC/CCP	$1/8 \times 8 = 1$		$6 \times 1/2 = 3$	4
End				
Centred	$1/8 \times 8 = 1$		$2 \times 1/2 = 1$	2

Seven Primitive cells their Possible variations as centred unit cells				
	Possible	Axial distances	Axial angles	
Crystal system	variations	or edge lengths		
Cubic	Primitive			
	Body-centred	a=b=c	$\alpha = \beta = \gamma = 90^{\circ}$	
Tetragonal	Primitive,	a=b≠c	$\alpha = \beta = \gamma = 90^{\circ}$	
	Body-centred			
Orthorhombic	Primitive,	a≠a≠c	$\alpha = \beta = \gamma = 90^{\circ}$	
	Body-centred,			
	Face-centred,			
	End-centred			
Rhombohedral	Primitive	a=b=c	$\alpha = \beta = \gamma \neq 90^{\circ}$	
or Trigonal				
Hexagonal	Primitive	a=b≠c	$\alpha = \beta = 90^\circ, \gamma = 120^\circ$	
Monoclinic	Primitive,	a≠b≠c	$\alpha = \gamma = 90^\circ, \ \beta \neq 120^\circ$	
	End-centred			
Triclinic	Primitive	a≠b≠c	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	

	S.C.	B.C.C.	F.C.C.	H.C.P.
No. of atom	1	2	4	6
P.E.	52.4%	68%	74%	74%
Void space	47.6%	32%	26%	26%
C.N.	6	8	12	12
No. of T.V.	0	0	8	12
No. of O.V.	0	0	4	6
Relationship between	$r = \frac{a}{2}$	$r = \frac{\sqrt{3}a}{4}$	$r = \frac{a}{2\sqrt{2}}$	$\mathbf{r} = \frac{\mathbf{a}}{2}$
edge length and radius				
Type of Packing	ААА Туре		АВСАВС Туре	ABAB AB type

•
$$d = \frac{Z \times M}{N_A \times aq}$$

d = density z = number of atom in a unit cell.

 $N_A = 6.022 \times 10^{23}$

Square Close Packing

- The spheres in the adjacent row lie just one over & show a horizontal & vertical alignment
- Co-ordⁿ 4
- Packing fraction = 78.5%

Hexagonal Close Packing

- The spheres in every second row are seated in the depression.
- Co-ordn 6
- Packing fraction = 90.75% (91%)

Tetrahedral Void

- Co-ordⁿ = 4
- **Radius Ratio**= $\frac{r_{\text{void}}}{r_{\text{sphere}}} = 0.225$
- T.V's. Location at body diagonal
- Max No. of T.V. in one body diagonal = 2
- 1st Nearest distn betn two T.V. = a/2
- 2nd Nearest distn betn two T.V. = $\frac{a}{\sqrt{2}}$
- 3nd Nearest distn betn two T.V. = $\frac{\sqrt{3}a}{2}$
- Distn betn Corner atom & T.V. = $\frac{\sqrt{3a}}{4}$
- Ratio betn T.V. & O.V. = 2 : 1
- Ratio betn T.V. & O.V. at 1 body digaonal=2:1
- Distance Between O.V. & T.V. = $\frac{\sqrt{3a}}{4}$

Octahedral Void

- Co-ordn = 6
- **Radius Ratio**= $\frac{r_{void}}{r_{sphere}} = 0.414$
- O.V's. Location at body center & as well as edge center

- Max No. of O.V. in one body diagonal = 1
- 1st Nearest distn betn two O.V. = $\frac{a}{\sqrt{2}}$
- Distn betn edge center's O.V. & Body center's

O.V. =
$$\frac{a}{\sqrt{2}}$$

Diamond =
$$\frac{\pi\sqrt{3}}{6} = 0.34$$

Defects in Crystal Structure :

Radius ratio and co-ordination number (CN)

Limiting radius ratio	CN	Geometry
[0.155 - 0.225]	3	[Plane triangle]
[0.255 - 0.414]	4	[Tetrahedral]
[0.414 - 0.732]	6	[Octahedral]
[0.732 - 1]	8	[bcc]

- Relationship between radius of void (r) and the radius of the sphere (R): r (tetrahedral)
 = 0.225 R; r (octahedral) = 0.414 R
- Paramagnetic : Presence of unpaired electrons [attracted by magnetic field]
- Ferromagnetic :

Permanent magnetism $[\uparrow \uparrow \uparrow \uparrow]$

Antiferromagnetic :

Net magnetic moment is zero $[\uparrow \downarrow \uparrow \downarrow]$