8. Solid State

Unit Cell	Corners	Body	Face	Total No. of atoms per unit cell
SCC	$1 / 8 \times 8=1$	----	----	1
BCC	$1 / 8 \times 8=1$	1	---	2
FCC/CCP	$1 / 8 \times 8=1$	---	$6 \times 1 / 2=3$	4
End				
Centred	$1 / 8 \times 8=1$	----	$2 \times 1 / 2=1$	2

Seven Primitive cells their Possible variations as centred unit cells					
Crystal system	Possible variations Cubic	Primitive Bodial distances or edge lengths	Axial angles		
Tetragonal	Primitive, Body-centred	$\mathrm{a}=\mathrm{b}=\mathrm{c}$		\quad	$\alpha=\beta=\gamma=90^{\circ}$
:---					
Orthorhombic					
Primitive, Body-centred, Face-centred, End-centred					

	S.C.	B.C.C.	F.C.C.	H.C.P.
No. of atom	1	2	4	6
P.E.	52.4%	68%	74%	74%
Void space	47.6%	32%	26%	26%
C.N.	6	8	12	12
No. of T.V.	0	0	8	12
No. of O.V.	0	0	4	6
Relationship between edge length and radius	$\mathrm{r}=\frac{\mathrm{a}}{2}$	$\mathrm{r}=\frac{\sqrt{3} \mathrm{a}}{4}$	$\mathrm{r}=\frac{\mathrm{a}}{2 \sqrt{2}}$	$\mathrm{r}=\frac{\mathrm{a}}{2}$
Type of Packing	AAA Type		ABCABC Type	ABAB AB type

- $\mathrm{d}=\frac{\mathrm{Z} \times \mathrm{M}}{\mathrm{N}_{\mathrm{A}} \times \mathrm{aq}}$
$\mathrm{d}=$ density $\mathrm{z}=$ number of atom in a unit cell.
$\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$

Square Close Packing

- The spheres in the adjacent row lie just one over \& show a horizontal \& vertical alignment
- Co-ord ${ }^{\mathrm{n}} 4$
- Packing fraction = 78.5\%

Hexagonal Close Packing

- The spheres in every second row are seated in the depression.
- Co-ordn 6
- \quad Packing fraction $=90.75 \%(91 \%)$

Tetrahedral Void

- Co-ord $^{\mathrm{n}}=4$
- Radius Ratio $=\frac{r_{\text {void }}}{{\underset{r}{\text { sphere }}}}=0.225$
- T.V's. Location at body diagonal
- Max No. of T.V. in one body diagonal = 2
- 1st Nearest distn betn two T.V. = a/2
- 2nd Nearest distn betn two T.V. $=\frac{\mathrm{a}}{\sqrt{2}}$
- 3nd Nearest distn betn two T.V. $=\frac{\sqrt{3} a}{2}$
- Distn betn Corner atom \& T.V. $=\frac{\sqrt{3} a}{4}$
- Ratio betn T.V. \& O.V. $=2: 1$
- Ratio betn T.V. \& O.V. at 1 body digaonal=2:1
- Distance Between O.V. \& T.V. $=\frac{\sqrt{3} a}{4}$

Octahedral Void

- Co-ordn $=6$
- Radius Ratio $=\frac{r_{\text {void }}}{\mathrm{r}_{\text {sphere }}}=0.414$
- O.V's. Location at body center \& as well as edge center
- Max No. of O.V. in one body diagonal =1
- 1st Nearest distn betn two O.V. $=\frac{a}{\sqrt{2}}$
- Distn betn edge center's O.V. \& Body center's

$$
\text { O.V. }=\frac{a}{\sqrt{2}}
$$

- \quad Diamond $=\frac{\pi \sqrt{3}}{6}=0.34$

Defects in Crystal Structure :

$>$ Radius ratio and co-ordination number (CN)

Limiting radius ratio	CN	Geometry
$[0.155-0.225]$	3	$[$ Plane triangle $]$
$[0.255-0.414]$	4	$[$ Tetrahedral $]$
$[0.414-0.732]$	6	$[$ Octahedral $]$
$[0.732-1]$	8	$[\mathrm{bcc}]$

$>$ Relationship between radius of void (r) and the radius of the sphere (R): r (tetrahedral)
$=0.225 \mathrm{R} ; \mathrm{r}$ (octahedral) $=0.414 \mathrm{R}$
$>$ Paramagnetic: Presence of unpaired electrons [attracted by magnetic field]
$>$ Ferromagnetic:
Permanent magnetism [$\uparrow \uparrow \uparrow \uparrow]$
> Antiferromagnetic:
Net magnetic moment is zero $[\uparrow \downarrow \uparrow \downarrow$]

