
9. Solutions

Pressure of the Gas (or) Henry'a Law :

• The mass of a gas dissolved per unit volume of solvent is proportional to the pressure of the gas at constant temperature.

Ο m α p or m = kp where k is Henry's constant

The partial pressure of the gas is proportional to the mole fraction of the gas (x) in the solution" and it is expressed as p = K_Hx Here K_H is the Henry' s law constant.

	Normality (N) = $\frac{\text{number of equivalents}}{\text{volume of the solution in litres}}$
≻	Molairty (M) = $\frac{\text{number of moles}}{\text{volume of the solution in litres}}$
	Raoult's law
	$P = p_{A} + p_{B} = p_{A}^{\circ} X_{A} + p_{B}^{\circ} X_{B}$
≻	Characteristics of an ideal solution :
	(i) $\Delta_{sol} V = 0$ (ii) $\Delta_{sol} H = 0$
≻	Relative lowering of vapour pressure
	$= \frac{P_{A}^{\circ} - P_{A}}{P_{A}^{\circ}}; \frac{P_{A}^{\circ} - P_{A}}{P_{A}^{\circ}} = X_{B} = \frac{n_{B}}{n_{A} + n_{B}}$
►	Colligative ∞ Number of particles ions/moles of solute properties
≻	Depression of freezing point, $\Delta T_f = K_t m$
►	Elevation in boiling point with relative lowering of vapour pressure
	$\Delta T_{\rm b} = \frac{1000 K_{\rm b}}{M_1} \left(\frac{p^{\circ} - p}{p^{\circ}}\right) (M_1 = \text{mol. wt. of solvent})$
≻	Osmotic pressure (P) with depression in
	freezing point $\Delta T_r P = \Delta T_r \times \frac{dRT}{1000K_f}$
	Relation between Osmotic pressure and other colligative properties :
i.	$\pi = \frac{P_A^0 - P_A}{P_A^0} \times \frac{dRT}{M_B}$ Relative lowering of vapour
	pressure
ii.	$\pi = \Delta T_b \times \frac{dRT}{1000K_b}$ Elevation in boiling point
iii.	$\pi = \Delta T_f \times \frac{dRT}{1000K_f}$ Depression in freezing point
	$i = \frac{Normal molar mass}{Observed molar mass} = \frac{Observed colligative property}{Normal colligative property}$

> Degree association
$$a = (1 - i) \frac{n}{n-1} \&$$

degree of dissociation (α) = $\frac{i-1}{n-1}$

Abnormal Molar mass

0 Electrolytes undergo ionisation in aqueous solutions as a result number of particle in the solution increases hence magnitude of colligative properties increases.

van't Hoff's factor (i) =

a)

d)

observed colligative properties calculated colligative property (or) i =

b)
$$i = \frac{\text{Calculated molar mass of solute}}{\text{experimental molar mass of solute}}$$
 (or)

total number of moles of particles after dissociation or association

c) i = number of moles of particles before dissociation or association

Normal / actual / Calculate / Original M_{wt}of solute Abnormal / Observed / Theorical M_{wt} of solute

Solute dissociation (or) Ionisation

If a **solute** is dissociated or ionised in solutions to give 'n' ions and ' α ' is the degree of ionisation,

$$A_n \rightarrow nA$$

0

Initial moles 1

Number of moles after dissociation

$$1-\alpha$$
 $n\alpha$

Degree of ionisation,
$$\alpha = \frac{i-1}{n-1}$$

Solute association

If a solute is associated in solutions, n molecules associate and α is the degree of association,

nA

1

Initial moles

Number of moles after dissociation $1-\alpha$ α/n

Degree of ionisation,

Inclusion of van't Hoff factor modifies the equations for colligative properties as,

Relative lowering of vapour pressure of solvent.

$$\frac{p^{\circ} - p}{p^{\circ}} = iX_{\text{solute}}$$

Depression of **freezing point**, $\Delta T_f = iK_f m$ Elevation of **boiling point**, $\Delta T_f = iK_b m$ Osmotic pressure of **solution**, π = iCST