PHYSICAL CHEMISTRY

1. Some Basic Concepts of Chemistry

$>$ Molecular Mass $=\frac{\text { Average relative mass of one molecule }}{\frac{1}{12} \times \text { mass of } \mathrm{C}-12 \text { atom }}$
$>$ Molecular mass $=2 \times \mathrm{VD}$
$>$ Eq. wt. of metal $=\frac{w t . \text { of metal }}{w t . \text { of } \mathrm{H}_{2} \text { displaced }} \times 1.008$
$>$ Eq. wt. of metal $=\frac{\mathrm{wt} \text {. of metal }}{\mathrm{wt} \text {. of oxygen combined }} \times 8$

$$
=\frac{\mathrm{wt} \text {. of metal }}{\mathrm{wt} \text {. of chlorine combined }} \times 35.5
$$

\Rightarrow Molecular formula $=(\text { Empirical formula })_{n}$
$>1 \mathrm{amu}=1.66 \times 10^{-24} \mathrm{~g}$ (amu - atomic mass unit)
$\rightarrow \mathrm{n}=\frac{\mathrm{w}}{\mathrm{M}}$
where w is weight of substance and M is molar mass of substance, n is number of moles
$>\mathrm{n}=\frac{\text { given particles }}{6.022 \times 10^{23}}$ where n is number of moles
$>\mathrm{n}=\frac{\text { Given volume }}{22.4 \text { lit at STP }}$ where n is number of moles
$>$ Average atomic mass
$=\frac{(\mathrm{RA} \times \mathrm{At} . \mathrm{mass})_{1}+(\mathrm{RA} \times \mathrm{At} . \mathrm{mass})_{2}}{\mathrm{RA}(1)+\mathrm{RA}(2)}$
where RA is relative abundance.

1 gram atom $=\mathrm{N}_{\mathrm{A}}$ atoms $=6.023 \times 10^{23}$ atoms
$=$ Gram atomic mass
1 gram molecule $=\mathrm{N}_{\mathrm{A}}$ molecules
$=6.023 \times 10^{23}$ molecules $=$ Gram molecular mass
> Mass \% of an element
$=\frac{\text { Mass of that element in the compound } \times 100}{\text { Molar mass of the compound }}$
$>$ The value of n can be obtained by the following relationship
$\mathrm{n}=\frac{\text { Molecular mass }}{\text { Empirical formula mass }}$
$>\quad$ Normality (N)
$=\frac{\text { Gram equivalent of the solute }}{\text { Volume of the solution in litre }}=\frac{\mathrm{W} \times 1000}{\mathrm{GEM} \times \mathrm{V} \text { in } \mathrm{mL}}$, where GEM is gram equivalent mass of solute.
$>$ Equivalent mass of an element $=\frac{\text { Atomic mass }}{\text { Valency }}$

Equivalent mass of an acid $=\frac{\text { Molecular mass }}{\text { Basicity }}$
$>$ Equivalent mass of a base $=\frac{\text { Molecular mass }}{\text { Acidity }}$
$>$ Equivalent mass of a salt
$=\frac{\text { Formula mass }}{\text { Total }+ \text { ve or }- \text { ve charge }}$
$>$ Equivalent mass of an oxidising agent

$$
=\frac{\text { Molecular mass }}{\text { Total change in oxidation number }}
$$

$>$ Molarity \times GMM (solute) $=$ Normality \times GEM (solute), where GMM is gram molecular mass.
$>$ Normality and molarity equations :
$\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$ (For dilution)
$\frac{\mathrm{M}_{1} \mathrm{~V}_{1}}{\mathrm{n}_{1}}=\frac{\mathrm{M}_{2} \mathrm{~V}_{2}}{\mathrm{n}_{2}}$
(For reaction where n_{1} and n_{2} are no. of moles of the two reactants in a balanced chemical equation)
$M_{3}\left(V_{1}+V_{2}\right)=M_{1} V_{1}+M_{2} V_{2}$
(Final molarity on mixing two non-reacting solutions)
$>$ Number of millimoles $=$ Molarity $\times \mathrm{V}$ in mL
> Number of equivalents $=$ Normality $\times \mathrm{V}$ in L
$>$ Number of milliequivalents
$=$ Normality $\times \mathrm{V}$ in mL
$>$ Number of gram atoms or mole of atoms
$=\frac{\text { Mass of element in gram }}{\text { Gram atomic mass }}$
>1 mole $=$ mass of 6.023×10^{23} particles (atoms/ molecules)
> 1 mole atoms $=$ Gram atomic mass (or 1 g atom) $=6.023 \times 10^{23}$ atoms
> 1 mole molecules = Gram molecular mass (or 1 g molecule) $=6.023 \times 10^{23}$ molecules
$=22.4 \mathrm{~L}$ at STP
> 1 mole ionic compound = Gram formula mass $=6.023 \times 10^{23}$ formula units

No. of gram equivalents
$=\frac{\text { Weight of the solute(in } \mathrm{g} \text {) }}{\text { Equivalent weight of the solute }}$
$>$ No. of milliequivalents
$=\frac{\text { Weight of the solute(in g) }}{\text { Equivalent weight of solute }} \times 1000$
$>$ Strength of a solution

$$
=\frac{\text { Wt. of the solute (in g) }}{\text { Vol. of solution (in litres) }}
$$

Parts per million (ppm) of substance A (ppm)

$$
\begin{aligned}
& =\frac{\text { Mass of A }}{\text { Mass of solution }} \times 10^{6} \text { or } \\
& =\frac{\text { Vol. of A }}{\text { Vol. of solution }} \times 10^{6}
\end{aligned}
$$

$>$ Molality $(\mathrm{m})=\frac{\mathrm{M}}{\rho-\frac{\mathrm{MM}_{2}}{1000}}$ or
$\operatorname{Molarity}(M)=\frac{m \rho}{\left(1+\frac{\mathrm{mM}_{2}}{1000}\right)}$
where $\mathrm{M}_{2}=$ molecular mass of solute, $\rho=$ density
$>\quad \mathrm{M}=\frac{\mathrm{n}_{1}}{\left(\mathrm{n}_{1} \mathrm{M}_{1}+\mathrm{n}_{2} \mathrm{M}_{2}\right) / \rho}$
Here, $\mathrm{n}_{1} \mathrm{M}_{1}=$ mass of solute,
$\mathrm{n}_{2} \mathrm{M}_{2}=$ mass of solvent
i.e., $n_{1} M_{1}+n_{2} M_{2}=$ mass of solution.

