4. States of Matter

Boyle's Law at constant temperature and amount

 $P_1V_1 = P_2V_2 = Constant$

Charle's Law

V = kT at constant pressure

k is the proportionality constant depends upon (i) Amount of Gas (ii) Temperature

Gay Lussac's Law :

 $\frac{P_1}{T_1} = \frac{P_2}{T_2}$ at constant volume

Avogadro's Law

(T and P constant) V∝n

V = K₄n

 $\mathbf{V}_1/\mathbf{n}_1 = \mathbf{V}_2/\mathbf{n}_2$ (Constant T and P)

Ideal Gas Equation

PV = nRT

Where R is Proportionality constant is also known as Gas constant it is same for all Gases

Value of R in different units

Magnitude	Unit
0.0821	Litre-atm K ⁻¹ mol ⁻¹
82.1	ML-atm K ⁻¹ mol ⁻¹
62.1	Litre-mm-Hg K ⁻¹ mol ⁻¹
0.083	Litre bar K ⁻¹ mol ⁻¹
8.314	Pascal m ³ K ⁻¹ mol ⁻¹
8.314×10^{7}	erg K ⁻¹ mol ⁻¹
8.314	Joule K ⁻¹ mol ⁻¹
1.987	Cal K ⁻¹ mol ⁻¹

Density ; d = PM/RT

$$(d \propto P)$$
; $(d \propto 1/T)$

Graham's Law of Diffusion / Effusion ≻

• Rate of diffusion
$$R \propto \frac{1}{\sqrt{d}}$$

where d is density of gas at constant temperature and pressure

$$\frac{\mathbf{r}_1}{\mathbf{r}_2} = \sqrt{\frac{\mathbf{d}_2}{\mathbf{d}_1}}$$

 $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$

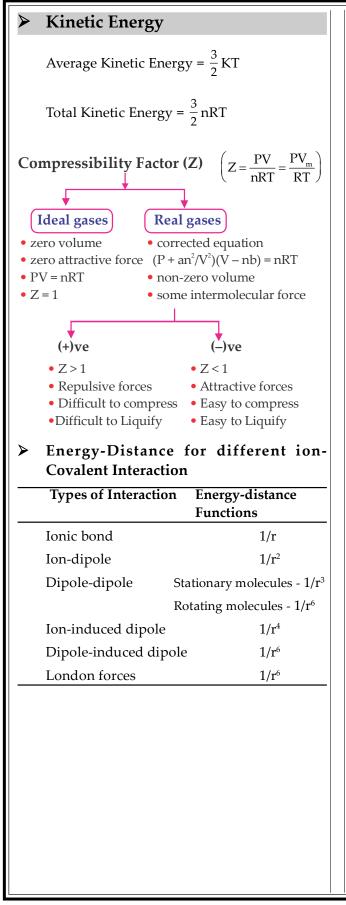
Dalton's of Partial Pressure : \geq

Calculate the total pressure of mixture of nonreacting gas and based on the law of conservation of amount

 \mathbf{P}_{1} is a partial pressure, \mathbf{P}_{T} \mathbf{x}_{1} is mole fraction) \mathbf{P}_{1} is

Total pressure of Gaseous mixture at constant

temperature : $P_T = \frac{(P_1 V_1 + P_2 V_2)}{(V_1 + V_2)}$


Aqueous Tension : $P_{moist} = P_{dry gas} + P_{water vapours}$

 $RH = \frac{Mass of water vapour present in certain volume of air}{L}$ Maximum Mass of water vapour present in same volume of air saturated by water vapour

≻ **Molecular Speed**

Most probable speed =
$$\sqrt{\frac{2KT}{m}} = \sqrt{\frac{2RT}{M}}$$

Average speed = $\sqrt{\frac{8RT}{\pi M}} = \sqrt{\frac{8KT}{m}}$
Root mean square = $\sqrt{\frac{3RT}{M}} = \sqrt{\frac{3KT}{m}}$
 $V_{mp}: V_{av}: V_{rms} = \sqrt{2}: \sqrt{\frac{8}{\pi}}: \sqrt{3}$

$$\mathbf{r} = \mathbf{P}_{\mathrm{T}} \times \mathbf{x}_{\mathrm{1}}$$
 (where a Total pressure,

Critical Constant of the Gases

 T_c or critical temp : $T_c = 8a / 27Rb$ P_c or critical pressure : $P_c = a / 27b^2$ V_c or critical volume : $V_c = 3b$

 $Z_{\rm C} = \frac{P_{\rm C}V_{\rm C}}{RT_{\rm C}} = \frac{3}{8}$ (For all real gases)

> Van der Waal's Equation Real Gas

 $\left(P + \frac{an^2}{V^2}\right)(V - nb) = nRT$ where a and b are Van der Waal's constant.

b Boyle's Temperature : $T_b = \frac{a}{Rb}$