7. Thermodynamics

First Law of Thermodynamcis :

 $\Delta E = Q + W$ Expression for pressure volume work

 $W = -P\Delta V$

Maximum work in a reversible expansion :

W = -2.303 n RT log $\frac{V_2}{V_1} = -2.303$ nRT log $\frac{P_1}{P_2}$

 $W_{rev} \ge W_{irr}$

Enthalpy changes during phase transformation

- i. Enthalpy of Fusion
- ii. Heat of Vapourisation
- iii. Heat of Sublimation.
- **Enthalpy** : $\Delta H = \Delta E + P\Delta V = \Delta E + \Delta n_g RT$
- **Kirchoff's equation** :

 $\Delta E_{T_2} = \Delta E_{T_1} + \Delta C_V (T_2 - T_1) \text{ [constant V]}$

 $\Delta H_{T_2} = \Delta E_{T_1} + \Delta C_P (T_2 - T_1) \text{ [contant P]}$

> Entropy(s) :

Meassure of disorder or randomness $\Delta S = \Sigma S_p = -\Sigma S_p$

 $\Delta S = \frac{q_{rev}}{T} = 2.03 \text{ nR} \log \frac{V_2}{V_1} = 2.303 \text{ n} \text{ R} \log \frac{P_1}{P_2}$

Entropy Changes in an Ideal Gas

 $\Delta S = 2.303 nC_{p} \log \frac{T_{2}}{T_{1}} + 2.303 nR \log \frac{P_{1}}{P_{2}}$ $\Delta S = 2.303 nC_{v} \log \frac{T_{2}}{T_{1}} + 2.303 nR \log \frac{V_{2}}{V_{1}}$

1. for isothermal process :

 $\Delta S = 2.303 \,\mathrm{nR} \log_{10} \frac{\mathrm{P_1}}{\mathrm{P_2}}$

or

 $\Delta S = 2.303 nR \log_{10} \frac{V_2}{V_1}$

2. For isobaric process :

 $\Delta S = 2.303 \,\mathrm{nC}_{\mathrm{P}} \log \left(\frac{\mathrm{T}_{2}}{\mathrm{T}_{1}}\right)$

3. For isochoric process :

$$\Delta S = 2.303 \,\mathrm{nC_V log}\left(\frac{\mathrm{T_2}}{\mathrm{T_1}}\right)$$

- 4. For adiabatic process
- $P = 0 \qquad \text{so} \qquad \Delta S = 0$ $\Delta S_{\text{sys}} = 0$ $\Delta S_{\text{surr.}} = 0$ $\Delta S_{\text{Total}} = 0$

Entropy and Spotaneity

$$\begin{split} \Delta S_{Total} &= \Delta S_{system} + \Delta S_{surroundings} \\ \text{Case I : For a spontaneous process } \Delta S_{Total} > 0 \\ \text{Case II : For non spontaneous process } \Delta S_{Total} < 0 \\ \text{Case III : When process is at equilibrium } \Delta S_{Total} = 0 \\ \text{In a reversible adiabatic process, as } \mathbf{q} = 0, \\ \Delta S_{sys} = \Delta S_{surr} = \Delta S_{Total} = 0 \end{split}$$

Free energy change :

 $\Delta G = \Delta H - T\Delta S, \ \Delta G^{\circ} = nFE^{\circ}_{cell} - \Delta G =$ W(maximum) - P $\Delta V, \ \Delta G_{system} = -T\Delta S_{total}$

ΔH	ΔS	ΔG	Reaction characteristics	
-	+	Alwasy negative	Reaction is spontaneous at all temperature	
+	-	Alwasy positive	Reaction is nonspontaneos at all temperature	
-	-	Negative at low temp.	Spontaneous at high temp.	
			but positive at high temp.	
+	+	Positive at low temp.	Non spontaneous at low temp.	
		but negative at high temp	& spontaneous at high temp.	

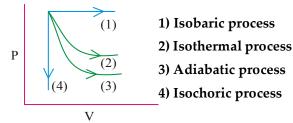
Isothermal process

1. $\Delta T = 0$ 3. $q \neq 0$ 2. $\Delta U = 0$ 4. $\Delta H = 0$

> Adiabatic process

1. $\Delta T \neq 0$	2. $\Delta U \neq 0$
3. $q = 0$	4. ΔH ≠ 0

 Graphical representation of thermodynamic processes



for expansion:

W_{Isobaric} > W_{Isothermal} > W_{Adiabatic} > W_{Isochoric} for compression :

 $W_{Isobaric} > W_{Adiabatic} > W_{Isothermal} > W_{Isochoric}$

Work for Osothermal Process

For expansion for compression

- 1. $V_2 > V_1$ 1. $V_1 > V_2$ 2. W = -ve2. W = +ve
- 3. $W = -P_{ext.} (V_2 V_1)$ 3. $W = +P_{ext.} (V_1 - V_2)$ 4. $W = -P_{ext.} \Delta V$ 4. $W = +P_{ext.} \Delta V$
- 5. $W_{max} \propto$ no. of moles

Characteristics of Internal energy

Ideal gas	Real gas	
U = f(T) only	U = f(T, P or V)	
When T is constant	When T is constant	
$\Delta U = 0, \ \Delta H = 0$	$\Delta \mathbf{U}\neq0,\ \Delta \mathbf{H}\neq0$	
$\left(\frac{dU}{dV}\right)_{T} = 0$	$\left(\frac{\mathrm{dU}}{\mathrm{dV}}\right)_{\mathrm{T}}\neq 0$	

Concept of Heat Capacity

Heat Capacity (s) $C = \frac{q}{\Delta T}$

Specific Heat Capacity (s) $s = \frac{q}{m\Delta T}$

Molar Heat Capacity (C_m) $C_m = \frac{q}{n\Delta T}$

► Work Done in Adiabatic Process As q = 0 $\Delta U = W = nC_V\Delta T$ $W = nC_V(T_2 - T_1)$

$$W = \frac{nR}{\gamma - 1} (T_2 - T_1)$$

Relation between C_p and C_v : $C_p - C_v = R$