Triangles

- Similar and Congruent Figures
- Two geometric figures having the same shape and size are said to be congruent figures.
- Two geometric figures having the same shape, but not necessarily the same size, are called similar figures.

Example:

(1) All circles are similar.
(2) All equilateral triangles are similar.
(3) All congruent figures are similar. However, the converse is not true.

- Similarity of Polygons

Two polygons with the same number of sides are similar, if

- their corresponding angles are equal
- their corresponding sides are in the same ratio (or proportion)
- Two lines segments are congruent, if they are equal in length.
- Two angles are congruent, if they have the same measure.
- СРСТ:

CPCT stands for Corresponding Parts of Congruent Triangles.
If $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$, then corresponding sides are equal i.e., $\mathrm{AB}=\mathrm{PQ}, \mathrm{BC}=\mathrm{QR}$, and $\mathrm{CA}=\mathrm{RP}$ and corresponding angles are equal i.e., $\angle \mathrm{A}=\angle \mathrm{P}, \angle \mathrm{B}=\angle \mathrm{Q}$, and $\angle \mathrm{C}$ $=\angle R$.

- Basic proportionality theorem:

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.

Corollary: If D and E are points on the sides, AB and AC , respectively of $\triangle A B C$ such that $D E \| B C$, then
$\frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AE}}$
$\frac{\mathrm{AB}}{\mathrm{DB}}=\frac{\mathrm{AC}}{\mathrm{EC}}$
Example:
In the given figure, S and T are points on PQ and PR respectively of $\triangle \mathrm{PQR}$ such that ST \| QR.

Determine the length of PR.

Solution:

Since ST \| QR, by basic proportionality theorem, we have
$\frac{\mathbf{P S}}{\mathbf{S Q}}=\frac{\mathbf{P T}}{\mathbf{T R}}$
$\Rightarrow \frac{12}{18}=\frac{3}{\mathrm{TR}}$
$\Rightarrow \mathrm{TR}=\frac{3 \times 1.8}{1.2}=4.5 \mathrm{~cm}$
\therefore PR $=\mathbf{P T}+\mathbf{T R}=(3+45) \mathrm{cm}=75 \mathrm{~cm}$

- Converse of basic proportionality theorem:

If a line divides any two sides of a triangle in the same ratio, then the line is parallel to the third side.

- Theorem: (AAA similarity criterion)

If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (or proportion) and hence, the two triangles are similar.

- Theorem: (AA similarity criterion)

If in two triangles, two angles of one triangle are respectively equal to the two angles of the other triangle, then the two triangles are similar.

Example:

In $\triangle \mathrm{ABC}, \angle \mathrm{C}$ is acute, D and E are points on sides BC and AC respectively, such that $A D \perp B C$ and $B E \perp A C$. Show that $B C \times C D=A C \times C E$.

Solution:

In $\triangle \mathrm{ADC}$ and $\triangle \mathrm{BEC}$, $\angle \mathrm{ADC}=\angle \mathrm{BEC}=90^{\circ}$
$\angle \mathrm{DCA}=\angle \mathrm{ECB}$
[Common]
\therefore By AA similarity criterion, $\triangle \mathrm{ADC} \sim \triangle \mathrm{BEC}$
$\therefore \frac{\mathrm{CD}}{\mathrm{CE}}=\frac{\mathrm{AC}}{\mathrm{BC}}$
$\Rightarrow \mathbf{B C} \times \mathbf{C D}=\mathbf{A C} \times \mathbf{C E}$
Hence, the result is proved.

- Theorem: (SSS similarity criterion)

If in two triangles, sides of one triangle are proportional to the sides of the other triangle then the two triangles are similar by SSS similarity criterion.

Example:

If PQR is an isosceles triangle with $\mathrm{PQ}=\mathrm{PR}$ and A is the mid-point of side QR then prove that $\triangle \mathrm{PAQ}$ is similar to $\triangle \mathrm{PAR}$.

Solution:

It is given that $\triangle P Q R$ is an isosceles triangle and $P Q=P R$.

In triangles PAQ and PAR, $P Q=P R$
Also, A is the mid-point of QR , therefore $\mathrm{QA}=\mathrm{AR}$
And, PA = PA (Common to both triangles)
Therefore, we can say that

$$
\frac{\mathrm{PQ}}{\mathrm{PR}}=\frac{\mathrm{QA}}{\mathrm{AR}}=\frac{\mathrm{PA}}{\mathrm{PA}}
$$

\therefore Using SSS similarity criterion, we obtain $\triangle \mathrm{PAQ} \sim \triangle \mathrm{PAR}$

- Theorem: (SAS similarity criterion)

If one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar by SAS similarity criterion.

Example:

If PQRS is a parallelogram, then prove that $\Delta \mathrm{SOR}$ is similar to $\triangle \mathrm{POQ}$.

Solution:

Consider $\triangle \mathrm{SOR}$ and $\triangle \mathrm{POQ}$.

Since PQRS is a parallelogram, the diagonals bisect each other.
$\therefore \mathrm{SO}=\mathrm{OQ}$ and $\mathrm{PO}=\mathrm{OR}$
and $\angle \mathrm{POQ}=\angle \mathrm{SOR}$ (Vertically opposite angles)
By SAS similarity criterion, we obtain
Δ SOR ~ Δ QOP

- Areas of similar triangles

Theorem: The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

Example:

In $\triangle A B C, D$ and E are the respective mid-points of sides $A B$ and $B C$. Find the ratio of the areas of $\triangle \mathrm{DBE}$ and $\triangle \mathrm{ABC}$.

Solution:

In $\triangle A B C, D$ and E are the respective mid-points of the sides, $A B$ and $B C$.
By the converse of BPT, DE\|AC
In $\triangle \mathrm{DBE}$ and $\triangle \mathrm{ABC}$,
$\angle \mathrm{DBE}=\angle \mathrm{ABC} \quad$ [Common]
$\angle \mathrm{BED}=\angle \mathrm{BCA} \quad$ [Corresponding angles]
$\angle \mathrm{BDE}=\angle \mathrm{BAC} \quad$ [Corresponding angles]
\therefore By AAA similarity criterion, $\triangle \mathrm{DBE} \sim \triangle \mathrm{ABC}$
$\Rightarrow \frac{\text { Area }(\triangle \mathrm{DBE})}{\text { Area }(\triangle \mathrm{ABC})}=\left(\frac{\mathrm{BE}}{\mathrm{BC}}\right)^{2}$
$=\left(\frac{\mathbf{B E}}{2 B E}\right)^{2} \quad[\mathrm{E}$ is mid point of BC$]$
$=\frac{1}{4}$
$=1: 4$
Result: Using the above theorem, the result " the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians or altitudes or angle bisector" can be proved.

- Pythagoras theorem:

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Example:

$\triangle \mathrm{ABC}$ is right-angled at B and $\mathrm{BD} \perp \mathrm{CA}$.

Prove that $\mathrm{BD}^{2}=\mathrm{CD} \times \mathrm{DA}$.
Solution:
By applying Pythagoras theorem in $\triangle \mathrm{BDC}, \triangle \mathrm{BDA}$, and $\triangle \mathrm{ABC}$, we obtain

$$
\begin{equation*}
\mathrm{BC}^{2}=\mathrm{CD}^{2}+\mathrm{BD}^{2} \tag{1}
\end{equation*}
$$

$\mathrm{BA}^{2}=\mathrm{BD}^{2}+\mathrm{DA}^{2}$
$\mathrm{CA}^{2}=\mathrm{BC}^{2}+\mathrm{BA}^{2}$
Adding equations (1) and (2), we obtain
$\mathrm{BC}^{2}+\mathrm{BA}^{2}=2 \mathrm{BD}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}$
$\Rightarrow \mathrm{CA}^{2}=2 \mathrm{BD}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2} \quad \ldots[$ Using (3)]
$\Rightarrow(C D+D A)^{2}=2 \mathrm{BD}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}$
$\Rightarrow \mathrm{CD}^{2}+\mathrm{DA}^{2}+2 \times \mathrm{CD} \times \mathrm{DA}=2 \mathrm{BD}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}$
$\Rightarrow \mathrm{CD} \times \mathrm{DA}=\mathrm{BD}^{2}$

- Converse of Pythagoras theorem:

In a triangle, if the square of one side is equal to the sum of the squares of other two sides, then the angle opposite to the first side is a right angle.

