THREE DIMENSIONAL GEOMETRY

Direction cosines and direction ratios of a line joining two points. Cartesian equation and vector equation of a line, skew lines, shortest distance between two lines. Angle between two lines.

In this chapter you will study

- Direction ratios and directions cosines of a line
- Equation of line in Cartesian and vector form
- Angle between two lines.

List of Topics

Topic-1: Direction Ratios and Direction Cosines Page No. 269
Topic-2: Lines \& Its Equations in Different forms Page No. 275

Topic-1

Direction Ratios and Direction Cosines

Concepts Covered - Direction Ratios, - Direction Cosines
- Relationship between DC's of a line.

Revision Notes

1. Direction Cosines of a Line :

- If A and B are two points on a given line L, then direction cosines of vectors $\overrightarrow{A B}$ and $\overrightarrow{B A}$ are the direction cosines (d.c.'s) of line L. Thus if α, β, γ are the directionangles which the line L makes with the positive direction of X, Y, Z-axis respectively, then its d.c.'s are $\cos \alpha, \cos \beta, \cos \gamma$.
- If direction of line L is reversed, the direction angles are replaced by their supplements angles i.e., $\pi-\alpha, \pi-\beta, \pi-\gamma$ and so are the d.c.'s i.e., the direction cosines become $-\cos \alpha,-\cos$ $\beta,-\cos \gamma$.

O-ur Key Words

Supplement angles: Two angles or arcs whose sum is 180° degrees.

- So, a line in space has two set of d.c.'s viz $\pm \cos$ $\alpha, \pm \cos \beta, \pm \cos \gamma$.
- The d.c.'s are generally denoted by l, m, n. Also $l^{2}+m^{2}+n^{2}=1$ and so we can deduce that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$. Also $\sin ^{2} \alpha+\sin ^{2} \beta+$ $\sin ^{2} \gamma=2$.
- The d.c.'s of a line joining the points $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ are $\pm \frac{x_{2}-x_{1}}{A B}, \pm \frac{y_{2}-y_{1}}{A B}, \pm \frac{z_{2}-z_{1}}{A B}$; where $A B$ is the distance between the points A andBi.e, $A B=\left|\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}\right|$

2. Direction Ratios of a Line :

Any three numbers a, b, c (say) which are proportional to d.c.'s i.e., l, m, n of a line are called the direction ratios (d.r.'s) of the line. Thus, $a=\lambda l, b=\lambda m, c=\lambda n$ for any $\lambda \in R-\{0\}$.
Consider, $\frac{l}{a}=\frac{m}{b}=\frac{n}{c}=\frac{1}{\lambda}$

These are the lines in space which are neither parallel nor intersecting. They lie in different planes. Angle between skew lines is the angle between two intersecting lines drawn from any point (origin) parallel to each of the skew lines.

> If $l_{1}, m_{1}, n_{1}, l_{\nu}, m_{\nu}, n_{2}$ are the D.Cs and $a_{1 \nu}, b_{1 \nu}, c_{1}, a_{\nu}, b_{\nu \prime} c_{2}$ are the D.Rs of the two lines and ' θ ' is the acute angle between them, then
These are the lines in space which are neither parallel nor intersecting.
They lie in different planes. Angle between skew lines is the angle
between two intersecting lines drawn from any point (origin) parallel
to each of the skew lines.

If $l_{\nu}, m_{1}, n_{1}, l_{\nu}, m_{\nu}, n_{2}$ are the D.Cs and $a_{1}, b_{1}, c_{1} a_{\nu} b_{\nu} c_{2}$
are the D.Rs of the two lines and ' θ ' is the acute angle
between them, then
$\cos \theta=\left\|l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right\|=\left\|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right\|$
between
lines

or

$$
l=\frac{a}{\lambda}, m=\frac{b}{\lambda}, n=\frac{c}{\lambda}
$$

or $\left(\frac{a}{\lambda}\right)^{2}+\left(\frac{b}{\lambda}\right)^{2}+\left(\frac{c}{\lambda}\right)^{2}=1\left[\operatorname{Using} l^{2}+m^{2}+n^{2}=1\right]$
or

$$
\lambda= \pm \sqrt{a^{2}+b^{2}+c^{2}}
$$

Therefore,

$$
\begin{gathered}
l= \pm \frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}} \\
m= \pm \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, n= \pm \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}
\end{gathered}
$$

- The d.r.'s of a line joining the points $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ are $x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}$ or $x_{1}-x_{2}, y_{1}-y_{2}, z_{1}-z_{2}$.
- Direction ratios are sometimes called as Direction Numbers.

3. Relation Between the Direction Cosines of a Line :

Consider a line L with d.c's l, m, n. Draw a line passing through the origin and $P(x, y, z)$
and parallel to the given line L. From P draw a perpendicular $P A$ on the X-axis, suppose $O P=r$
Now in $\triangle O A P, \angle P A O=90^{\circ}$
we have, $\quad \cos \alpha=\frac{O A}{O P}=\frac{x}{r}$ or $x=l r$.
Similarly we can obtain
$y=m r$ and $z=n r$.
Therefore, $x^{2}+y^{2}+z^{2}=r^{2}\left(l^{2}+m^{2}+n^{2}\right)$
But we know that

$$
x^{2}+y^{2}+z^{2}=r^{2}
$$

Hence, $\quad l^{2}+m^{2}+n^{2}=1$.

O-w Key Formulae

1. Distance Formula :

The distance between two points $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ is given by the expression
$A B=\left|\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}\right|$ units.

2. Section Formula :

The co-ordinates of a point Q which divides the line joining the points $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ in the ratio $m: n$
(a) internally, are $\left(\frac{\left(m x_{2}+n x_{1}\right)}{m+n}, \frac{\left(m y_{2}+n y_{1}\right)}{m+n}, \frac{\left(m z_{2}+n z_{1}\right)}{m+n}\right)$
(b) externally, are $\left(\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}, \frac{m z_{2}-n z_{1}}{m-n}\right)$.

Amazing Facts

- The largest 3D shape in the world is a Rhombicosidecahedron. It is an Archimedian solid. It has 20 faces that are triangular, 30 faces that are squares, and 12 are that are pentagons. This shape has 120 edges and 60 vertices.
- The Louvre pyramid is a beautiful installation that is perfect example of a 3D shape i.e., square pyramid. It is situated in the city of Paris in the prestigious museum of the Louvre.

Mnemonics

Direction Cosines

$\mathbf{1}$ glass \mathbf{L} e \mathbf{M} o \mathbf{N} juice

Direction Ratios

3 Lifetime Movies with New faces a b c

İnterpretation

Direction cosines of a line are the cosines of the angles made by the line with the positive directions of the co. ordinate axes. If I, m, n are the D. cs of a line, then $I^{2}+m^{2}+n^{2}=1$

OBuFchive rype QuFshions

Multiple Choice Questions

Q. 1. Distance of the point (α, β, γ) from γ-axis is
(A) β units
(B) $|\beta|$ units
(C) $|\beta|+|\gamma|$ units
(D) $\sqrt{\alpha^{2}+\gamma^{2}}$ units

Ans. Option (D) is correct.

Explanation:

The foot of perpendicular from point $P(\alpha, \beta, \gamma)$ on Y-axis is $Q(0, \beta, 0)$.
\therefore Required distance,

$$
\begin{aligned}
P Q & =\left|\sqrt{(\alpha-0)^{2}+(\beta-\beta)^{2}+(\gamma-0)^{2}}\right| \\
& =\left|\sqrt{a^{2}+\gamma^{2}}\right| \text { units }
\end{aligned}
$$

Q. 2. If the direction cosines of a line are k, k, k, then
(A) $k>0$
(B) $0<k<1$
(C) $k=1$
(D) $k=\frac{1}{\sqrt{3}}$ or $-\frac{1}{\sqrt{3}}$
Ans. Option (D) is correct.

Explanation:

Since, direction cosines of a line are k, k and k.
$\therefore l=k, m=k$ and $n=k$
We know that, $\quad l^{2}+m^{2}+n^{2}=1$

$$
\begin{aligned}
\Rightarrow & k^{2}+k^{2}+k^{2} & =1 \\
\Rightarrow & k^{2} & =\frac{1}{3} \\
\therefore & k & = \pm \frac{1}{\sqrt{3}}
\end{aligned}
$$

Q. 3. If the direction ratios of a line are 2,3 and -6 , then direction cosines of the line making obtuse angle with Y -axis are:
(A) $\frac{2}{7}, \frac{3}{7}, \frac{6}{7}$
(B) $\frac{-2}{7}, \frac{-3}{7}, \frac{6}{7}$
(C) $\frac{-2}{7}, \frac{3}{7}, \frac{-6}{7}$
(D) $\frac{-2}{7}, \frac{-3}{7}, \frac{-6}{7}$

Ans. Option (B) is correct.
Explanation: Direction cosines of the line, whose direction ratios are 2, 3, -6 are:
$\frac{2}{\sqrt{2^{2}+3^{2}+(-6)^{2}}}, \frac{3}{\sqrt{2^{2}+3^{2}+(-6)^{2}}}, \frac{-6}{\sqrt{2^{2}+3^{2}+(-6)^{2}}}$
or $\frac{2}{7}, \frac{3}{7}, \frac{-6}{7}$
Since, line makes obtuse angle with Y -axis, then

$$
\cos \beta<0
$$

Therefore, direction cosines are $\frac{-2}{7}, \frac{-3}{7}, \frac{6}{7}$.
Q. 4. If a line makes an angle α, β, γ with X-axis, γ-axis and Z-axis respectively, then $\cos 2 \alpha+\cos 2 \beta+$ $\cos 2 \gamma$ is:
(A) -1
(B) 1
(C) 0
(D) 2

Ans. Option (A) is correct.
Explanation: We know that,
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
$\Rightarrow\left(\frac{1+\cos 2 \alpha}{2}\right)+\left(\frac{1+\cos 2 \beta}{2}\right)+\left(\frac{1+\cos 2 \gamma}{2}\right)=1$
$\Rightarrow 3+\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=2$
$\Rightarrow \cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=-1$
Q. 5. The equations of \mathbf{Y}-axis in spaces are:
(A) $x=0, y=0$
(B) $x=0, z=0$
(C) $y=0, z=0$
(D) None of these

Ans. Option (B) is correct.
Explanation: On Y-axis, coordinates of X-axis and Z-axis both are zero.
Q. 6. If the direction cosines of a line are $\frac{k}{3}, \frac{k}{3}, \frac{k}{3}$, then value of k is:
(A) $k=1$
(B) $k=\frac{1}{3}$
(C) $k>0$
(D) $k= \pm \sqrt{3}$

Ans. Option (D) is correct.
Explanation:

$$
\begin{aligned}
& & \frac{k^{2}}{9}+\frac{k^{2}}{9}+\frac{k^{2}}{9} & =1 \\
\Rightarrow & & \frac{3 k^{2}}{9} & =1 \\
\Rightarrow & & k^{2} & =3 \\
\Rightarrow & & k & = \pm \sqrt{3}
\end{aligned}
$$

Q. 7. The direction cosines of the line passing through the following points:
$(-2,4,-5),(1,2,3)$ is:
(A) $\frac{3}{\sqrt{77}}, \frac{-2}{\sqrt{77}}, \frac{8}{\sqrt{77}}$
(B) $\frac{-3}{\sqrt{77}}, \frac{-2}{\sqrt{77}}, \frac{8}{\sqrt{77}}$
(C) $\frac{3}{\sqrt{77}}, \frac{-2}{\sqrt{77}}, \frac{-8}{\sqrt{77}}$
(D) $\frac{-3}{\sqrt{77}}, \frac{-2}{\sqrt{77}}, \frac{-8}{\sqrt{77}}$

Ans. Option (A) is correct.

Explanation: DR's are $1+2,2-4,3+5$, i.e. 3, $-2,8$.
Dividing by $|\sqrt{9+4+64}|=\sqrt{77}$
DC's are $\frac{3}{\sqrt{77}}, \frac{-2}{\sqrt{77}}, \frac{8}{\sqrt{77}}$
Q. 8. If $P(1,5,4)$ and $Q(4,1,-2)$, then direction ratios of is:
(A) $<3,-4,-6>$
(B) $<3,4,6>$
(C) $<3,4,-6>$
(D) $<3,-4,6>$

Ans. Option (A) is correct.
Explanation:
Direction ratio of $=4-1,1-5,-2-4$, i.e., $<3,-4,-6>$
Q. 9. The direction cosines of the Y -axis are:
(A) $(1,0,0)$
(B) $(1,0,0)$
(C) $(0,1,0)$
(D) $(0,0,1)$

Ans. Option (C) is correct.

Explanation: The direction cosines of the Y-axis are ($0,1,0$).
Q. 10. If l, m, n are the direction cosines of a line, then;
(A) $l^{2}+m^{2}+2 n^{2}=1$
(B) $l^{2}+2 m^{2}+n^{2}=1$
(C) $2 l^{2}+m^{2}+n^{2}=1$
(D) $l^{2}+m^{2}+n^{2}=1$

Ans. Option (D) is correct.
Q. 11. The sum of the direction cosines of Z-axis is
(A) 1
(B) 0
(C) 3
(D) 2

Ans. Option (A) is correct.
Explanation: Z-axis makes an angle 90° with X -axis, 90° with Y -axis and 0° with Z -axis
\therefore Direction cosines of Z -axis: $\cos 90^{\circ}, \cos 90^{\circ}, \cos 0$ i.e., $0,0,1$

Therefore, sum of the direction cosines $=0+0+1=1$

Suburchivermpa quisthons

Very Short Answer Type Questions

Q.1. Find the direction cosines of a line which makes equal angles with the coordinate axes.
[CBSE O.D. Set-I 2019]
Sol. D.R.s are 1, 1, 1
\therefore Direction cosines of the line are:

$$
\begin{equation*}
\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \tag{1}
\end{equation*}
$$

[CBSE Marking Scheme, 2019]

Detailed Solution :

Direction cosines of a line making angle, α with X-axis, β with Y-axis and γ with Z-axis are l, m, n.

$$
l=\cos \alpha, m=\cos \beta, n=\cos \gamma
$$

Given, the line makes equal angles with coordinate axes.
So,

$$
\begin{equation*}
\alpha=\beta=\gamma \tag{i}
\end{equation*}
$$

Direction cosines are :
$l=\cos \alpha, m=\cos \alpha, n=\cos \alpha$
Since,

$$
l^{2}+m^{2}+n^{2}=1
$$

$\therefore \cos ^{2} \alpha+\cos ^{2} \alpha+\cos ^{2} \alpha=1$
$\Rightarrow \quad 3 \cos ^{2} \alpha=1$
$\Rightarrow \quad \cos \alpha= \pm \sqrt{\frac{1}{3}}$
or

$$
\cos \alpha= \pm \frac{1}{\sqrt{3}}
$$

Therefore, direction cosines are.

$$
l= \pm \frac{1}{\sqrt{3}}, m= \pm \frac{1}{\sqrt{3}}, \text { and } n= \pm \frac{1}{\sqrt{3}}
$$

Q. 2. If a line makes angles $90^{\circ}, 135^{\circ}, 45^{\circ}$ with the X, Y and Z axes respectively, find its direction cosines.
[CBSE Delhi Set-I 2019]

Sol. d.c. 's $=<\cos 90^{\circ}, \cos 135^{\circ}, \cos 45^{\circ}>$

$$
\left.=<0,-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}},\right\rangle
$$

[CBSE Marking Scheme 2019]

Detailed Solution :

Direction cosines of a line making angle α with
X-axis, β with Y-axis and γ with Z-axis are l, m, n

$$
\begin{aligned}
l & =\cos \alpha, m=\cos \beta, n=\cos \gamma \\
\alpha & =90^{\circ}, \beta=135^{\circ}, \gamma=45^{\circ}
\end{aligned}
$$

Here,
So, direction cosines are

$$
\begin{aligned}
l & =\cos 90^{\circ}=0, \\
m & =\cos 135^{\circ}=\cos \left(90^{\circ}+45^{\circ}\right) \\
& =-\sin 45^{\circ} \\
& =-\frac{1}{\sqrt{2}}
\end{aligned}
$$

and

$$
n=\cos 45^{\circ}=\frac{1}{\sqrt{2}}
$$

Therefore, direction cosines are $0,-\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$.
Q. 3. Find the acute angle which the line with direction cosines $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{6}}, n$ makes with positive direction of Z-axis.

R\&U [S.Q.P. 2018]
Sol. $\quad l^{2}+m^{2}+n^{2}=1$

$$
\begin{array}{rlrl}
\Rightarrow & \left(\frac{1}{\sqrt{3}}\right)^{2}+\left(\frac{1}{\sqrt{6}}\right)^{2}+n^{2} & =1 \\
\Rightarrow & n & =\frac{1}{\sqrt{2}} \\
& \text { As, } & \cos \gamma & =n
\end{array}
$$

$$
\Rightarrow \quad \cos \gamma=\frac{1}{\sqrt{2}} \Rightarrow \gamma=45^{\circ} \text { or } \frac{\pi}{4}
$$

[CBSE Marking Scheme 2018]
Q. 4. Find the direction cosines of the line :

$$
\frac{x-1}{2}=-y=\frac{z+1}{2}
$$

R\&U [S.Q.P. 2018]

Sol. Direction ratios of the given line are $2,-1,2$. $1 / 2$ Hence, direction cosines of the line are:

$$
\frac{2}{3}, \frac{-1}{3}, \frac{2}{3} \text { or } \frac{-2}{3}, \frac{1}{3}, \frac{-2}{3}
$$

[CBSE Marking Scheme 2018]
Q. 5. If the points with position vectors $10 \hat{i}+3 \hat{j}, 12 \hat{i}-5 \hat{j}$ and $\lambda \hat{i}+11 \hat{j}$ are collinear, find the value of λ.

R\&U [Delhi Comptt. 2017]
Sol. Let A be $10 \hat{i}+3 \hat{j}, B$ be $12 \hat{i}-5 \hat{j}, C$ be $\lambda \hat{i}+11 \hat{j}$

$$
\begin{align*}
\overrightarrow{A B} & =2 \hat{i}-8 \hat{j} \\
\overrightarrow{A C} & =(\lambda-10) \hat{i}+8 \hat{j}
\end{align*}
$$

As $\overrightarrow{A B}$ and $\overrightarrow{A C}$ are collinear

$$
\frac{2}{\lambda-10}=\frac{-8}{8}
$$

So,
$\lambda=8$
[CBSE Marking Scheme, 2017]
Q. 6. Write the distance of the point (3, -5, 12) from X-axis.
(303) R\&U [Foreign 2017]
Q. 7. If a line makes angles $90^{\circ}, 60^{\circ}$ and θ with X, Y and Z-axis respectively, where θ is acute, then find θ.

R\&U [Delhi 2017, 2015]
Q. 8. What is the distance of the point (p, q, r) from the X-axis ?

R\&U [S.Q.P. Dec. 2016-17]
Q.9.A line passes through the point with position vector $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and makes angles $60^{\circ}, 120^{\circ}$, and 45° with X, Y and Z-axis respectively. Find the equation of the line in the Cartesian form.

R\&U [Delhi Set I, II, III, Comptt. 2016]
Sol. D-Cosines of line are $\frac{1}{2},-\frac{1}{2}, \frac{1}{\sqrt{2}}$
Equation of line is :

$$
\frac{x-2}{\frac{1}{2}}=\frac{y+3}{\frac{-1}{2}}=\frac{z-4}{\frac{1}{\sqrt{2}}}
$$

or

$$
2 x-4=-2 y-6=\sqrt{2}(z-4)
$$

[CBSE Marking Scheme 2016]
Q. 10. Write the direction ratios of the vector $3 \vec{a}+2 \vec{b}$ where $\vec{a}=\hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=2 \hat{i}-4 \hat{j}+5 \hat{k}$.

R\&U [O.D. Set I, II, III Comptt. 2015]
Sol. Getting

$$
3 \vec{a}+2 \vec{b}=7 \hat{i}-5 \hat{j}+4 \hat{k}
$$

\therefore D.R's are 7, $-5,4$.
[CBSE Marking Scheme 2015]

Short Answer Type Questions-I

Q. 1. Find the direction cosines of the following line:

$$
\frac{3-x}{-1}=\frac{2 y-1}{2}=\frac{z}{4}
$$

(38) R [SQP 2021-2022]
Q. 2. Let $l_{i^{\prime}} m_{i^{\prime}} n_{i} i=1,2,3$ be the direction cosines of
three mutually perpendicular vector in space.
Show that $A A^{\prime}=I^{3}$, where $A=\left[\begin{array}{lll}l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2} \\ l_{3} & m_{2} & n_{2}\end{array}\right]$.
R\&U [SQP Dec. 2016-17]

Sol.

$$
\begin{align*}
A A^{\prime} & =\left[\begin{array}{lll}
l_{1} & m_{1} & n_{1} \\
l_{2} & m_{2} & n_{2} \\
l_{3} & m_{3} & n_{3}
\end{array}\right]\left[\begin{array}{ccc}
l_{1} & l_{2} & l_{3} \\
m_{1} & m_{2} & m_{3} \\
n_{1} & n_{2} & n_{3}
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I_{3} \tag{1}
\end{align*}
$$

because

$$
\begin{align*}
& l_{1}^{2}+m_{1}^{2}+n_{1}^{2}=1, \text { for each } i=1,2,3 \\
& l_{i} l_{j}+m_{i} m_{j}+n_{i} n_{j}= 0(i \neq j) \text { for each } i, j=1,2,3 \\
& \quad[\text { CBSE Marking Scheme 2016] }
\end{align*}
$$

Q. 3. If a line has the direction ratios $-18,12,-4$, then find direction cosines.
Sol. Let $\quad a=-18, b=12$ and $c=-4$
Here, $\quad a^{2}+b^{2}+c^{2}=(-18)^{2}+(12)^{2}+(-4)^{2}$

$$
\begin{equation*}
=484 \tag{1}
\end{equation*}
$$

Now,

$$
\begin{align*}
& l=\frac{-18}{\sqrt{484}}=\frac{-18}{22}=\frac{-9}{11} \\
& m=\frac{12}{\sqrt{484}}=\frac{12}{22}=\frac{6}{11} \\
& n=\frac{-4}{\sqrt{484}}=\frac{-4}{22}=\frac{-2}{11} \tag{1}
\end{align*}
$$

Hence, direction cosines are $\left\langle\frac{-9}{11}, \frac{6}{11}, \frac{-2}{11}\right\rangle$.
Q.4. Find the direction cosines of the line passing through the two points $(-2,4,-5)$ and $(1,2,3)$.
Q. 5. Find the direction cosines of the line $\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$
Sol. Given, line is $\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$
or, $\frac{x-4}{-2}=\frac{y-0}{6}=\frac{z-1}{-3}$
Here, direction ratios are: $\langle-2,6,-3>$

Lines \& Its Equations in Different forms

Topic-2

Concepts Covered - Equation of line in cartesian and vector form,

- Shortest distance between lines
- Skew lines
- Condition of parallelism and perpendicularity of lines.

Revision Notes

1. Equation of a Line passing through two given points :

Consider the two given points as $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ with position vectors \vec{a} and \vec{b} respectively. Also assume \vec{r} as the position vector of any arbitrary point $P(x, y, z)$ on the line L passing through A and B. Thus

$$
\overrightarrow{O A}=\vec{a}=x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k}, \overrightarrow{O B}=\vec{b}=x_{2} \hat{i}+y_{2} \hat{j}+z_{2} \hat{k},
$$

$$
\overrightarrow{O P}=\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}
$$

(a) Vector equation of a line: Since the points A, B and P all lie on the same line which means that they are all collinear points.
Further it means, $\overrightarrow{A P}=\vec{r}-\vec{a}$ and $\overrightarrow{A B}=\vec{b}-\vec{a}$ are collinear vectors, i.e.,
or

$$
\begin{aligned}
\overrightarrow{A P} & =\lambda \overrightarrow{A B} \\
\vec{r}-\vec{a} & =\lambda(\vec{b}-\vec{a}) \\
\vec{r} & =\vec{a}+\lambda(\vec{b}-\vec{a}), \text { where } \lambda \in R
\end{aligned}
$$

This is the vector equation of the line.
(b) Cartesian equation of a line : By using the vector equation of the line $\vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a})$, we get

$$
\begin{aligned}
x \hat{i}+y \hat{j}+z \hat{k} & =x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k}+ \\
\cdot & {\left[\left(x_{2}-x_{1}\right) \hat{i}+\left(y_{2}-y_{1}\right) \hat{j}+\left(z_{2}-z_{1}\right) \hat{k}\right] }
\end{aligned}
$$

On equating the coefficients of $\hat{i}, \hat{j}, \hat{k}$, we get
$x=x_{1}+\lambda\left(x_{2}-x_{1}\right), y=y_{1}+\lambda\left(y_{2}-y_{1}\right), z$

$$
\begin{equation*}
=z_{1}+\lambda\left(z_{2}-z_{1}\right) \tag{i}
\end{equation*}
$$

On eliminating λ, we have
$\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
2. Angle between two lines:
(a) When d.r.'s or d.c.'s of the two lines are given : Consider two lines L_{1} and L_{2} with d.r.'s
in proportion to a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2} respectively ; d.c.'s as l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2}. Consider

$$
\vec{b}_{1}=a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k} \text { and } \vec{b}_{2}=a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{k} .
$$

These vectors \vec{b}_{1} and \vec{b}_{2} are parallel to the given lines L_{1} and L_{2}. So in order to find the angle between the lines L_{1} and L_{2}, we need to get the angle between the vectors \vec{b}_{1} and \vec{b}_{2}.
So the acute angle θ between the vectors \vec{b}_{1} and \vec{b}_{2} (and hence lines L_{1} and L_{2}) can be obtained as,

$$
\begin{aligned}
\vec{b}_{1} \cdot \vec{b}_{2} & =\left|\vec{b}_{1}\right|\left|\vec{b}_{2}\right| \cos \theta \\
\text { Thus, } \quad \cos \theta & =\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|
\end{aligned}
$$

- Also, in terms of d.c.'s : $\cos \theta$

$$
=\left|l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right|
$$

- Sine of angle is given as:
$\sin \theta=\left|\frac{\sqrt{\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}+\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|$.
(b) When Vector equations of two lines are given :
Consider vector equations of lines L_{1} and L_{2} as $\vec{r}_{1}=\vec{a}_{1}+\lambda \vec{b}_{1} \quad$ and $\vec{r}_{2}=\vec{a}_{2}+\mu \vec{b}_{2}$ respectively.

Then, the acute angle θ between the two lines is given by the relation
$\cos \theta=\left|\frac{\vec{b}_{1} \cdot \vec{b}_{2}}{\left|\vec{b}_{1}\right|\left|\vec{b}_{2}\right|}\right|$.
(c) When Cartesian equation of two lines are given: Consider the lines L_{1} and L_{2} in Cartesian form as,

$$
\begin{aligned}
& L_{1}: \frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}} \\
& L_{2}: \frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}
\end{aligned}
$$

Then the acute angle θ between the lines L_{1} and L_{2} can be obtained by,
$\cos \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|$

Note :

- For two perpendicular lines : $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}$ $=0, l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=0$.
- For two parallel lines :

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} ; \quad \frac{l_{1}}{l_{2}}=\frac{m_{1}}{m_{2}}=\frac{n_{1}}{n_{2}} .
$$

3. Shortest Distance between two Lines:

If two lines are in the same plane i.e., they are coplanar, they will intersect each other if they are nonparallal. Hence, the shortest distance between them is zero. If the lines are parallel then the shortest distance between them will be the perpendicular distance between the lines i.e., the length of the perpendicular drawn from a point on one line onto the other line. Adding to this discussion, in space, there are lines which are neither intersecting nor parallel. In fact, such pair of lines are non-coplanar and are called the skew lines.

Key Fact

1. Equation of a line in space passing through a given point and parallel to a given vector :

Consider the line L is passing through the given
point $A\left(x_{1}, y_{1}, z_{1}\right)$ with the position vector \vec{a}, \vec{d} is the given vector with d.r.'s a, b, c and \vec{r} is the position vector of any arbitrary point $P(x, y, z)$ on the line.

Thus, $\overrightarrow{O A}=\vec{a}=x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k}$,
$\overrightarrow{O P}=\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}, \vec{d}=a \hat{i}+b \hat{j}+c \hat{k}$.
(a) Vector equation of a line: As the line L is parallel to given vector \vec{d} and points A and P are lying on the line so, $\overrightarrow{A P}$ is parallel to the \vec{d}.
or

$$
\overrightarrow{A P}=\lambda \vec{d}
$$

where $\lambda \in R$ i.e., set of real numbers
or

$$
\begin{aligned}
\vec{r}-\vec{a} & =\lambda \vec{d} \\
\vec{r} & =\vec{a}+\lambda \vec{d}
\end{aligned}
$$

or
This is the vector equation of line.
(b) Parametric equations: If d.r.'s of the line are a, b, c, then by using $\vec{r}=\vec{a}+\lambda \vec{d}$, we get

$$
\begin{aligned}
& x \hat{i}+y \hat{j}+z \hat{k} \\
&=x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k}+\lambda(a \hat{i}+b \hat{j}+c \hat{k})
\end{aligned}
$$

Now, as we equate the coefficients of $\hat{i}, \hat{j}, \hat{k}$, we get the parametric equations of line given as,

$$
x=x_{1}+\lambda a, y=y_{1}+\lambda b, z=z_{1}+\lambda c .
$$

- Co-ordinates of any point on the line considered here are $\left(x_{1}+\lambda a, y_{1}+\lambda b, z_{1}+\lambda c\right)$.

Oनur Key Word

Parametric Equation: It is a type of equation that employs an independent variable called parameter (often denoted by t) and in which dependent variables are defined as continuous functions of the parameter and are not dependent on another existing variable.
(c) Cartesian equation of a line: If we eliminate the parameter λ from the parametric equations of a line, we get the Cartesian equation of line as

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
$$

- If l, m, n are the d.c.'s of the line, then Cartesian equation of line becomes

$$
\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}
$$

- Skew Lines : Two straight lines in space which are neither parallel nor intersecting are known as the skew lines. They lie in different planes and are non-coplanar.
- Line of Shortest distance : There exists unique line perpendicular to each of the skew lines L_{1} and L_{2}, and this line is known as the line of shortest distance (S.D.).

OBJFCHIVIs mypr Quisshions

A Multiple Choice Questions

Q. 1. The vector equation of the line $\frac{x-5}{3}=\frac{y+4}{7}=\frac{6-z}{2}$ is:
(A) $\vec{r}=(5 \hat{i}-4 \hat{j}+6 \hat{k})+\lambda(3 \hat{i}+7 \hat{j}-2 \hat{k})$
(B) $\vec{r}=(3 \hat{i}+7 \hat{j}+2 \hat{k})+\lambda(5 \hat{i}-4 \hat{j}+6 \hat{k})$
(C) $\vec{r}=(5 \hat{i}-4 \hat{j}+6 \hat{k})+\lambda(-3 \hat{i}+7 \hat{j}-2 \hat{k})$
(D) $\vec{r}=(-3 \hat{i}-7 \hat{j}+2 \hat{k})+\lambda(-5 \hat{i}+4 \hat{j}-6 \hat{k})$

Ans. Option (A) is correct.
Explanation: Rewriting the given line as:

$$
\frac{x-5}{3}=\frac{y-(-4)}{7}=\frac{z-6}{-2}
$$

\therefore Equation of line in vector form is

$$
\vec{r}=(5 \hat{i}-4 \hat{j}+6 \hat{k})+\lambda(3 \hat{i}+7 \hat{j}-2 \hat{k})
$$

Q. 2. The cartesian equation of a line is given by

$$
\frac{2 x-1}{\sqrt{3}}=\frac{y+2}{2}=\frac{z-3}{3}
$$

The direction cosines of the line is:
(A) $\frac{3}{\sqrt{55}}, \frac{4}{\sqrt{55}}, \frac{6}{\sqrt{55}}$
(B) $\frac{\sqrt{3}}{\sqrt{55}}, \frac{4}{\sqrt{55}}, \frac{6}{\sqrt{55}}$
(C) $\frac{-3}{\sqrt{55}}, \frac{4}{\sqrt{55}}, \frac{6}{\sqrt{55}}$
(D) $\frac{\sqrt{3}}{\sqrt{55}}, \frac{-4}{\sqrt{55}}, \frac{6}{\sqrt{55}}$

Ans. Option (B) is correct.
Explanation: Rewrite the given line as

$$
\begin{aligned}
& \frac{2\left(x-\frac{1}{2}\right)}{\sqrt{3}} & =\frac{y+2}{2}=\frac{z-3}{3} \\
\text { or, } & \frac{x-\frac{1}{2}}{\sqrt{3}} & =\frac{y+2}{4}=\frac{z-3}{6}
\end{aligned}
$$

\therefore DR's of line are $\sqrt{3}, 4$ and 6
Therefore, direction cosines are:
$\frac{\sqrt{3}}{\sqrt{(\sqrt{3})^{2}+4^{2}+6^{2}}}, \frac{4}{\sqrt{(\sqrt{3})^{2}+4^{2}+6^{2}}}, \frac{6}{\sqrt{(\sqrt{3})^{2}+4^{2}+6^{2}}}$
or, $\frac{\sqrt{3}}{\sqrt{55}}, \frac{4}{\sqrt{55}}, \frac{6}{\sqrt{55}}$
Q. 3. The point where the line joining the points $(0,5,4)$ and $(1,3,6)$ meets XY-plane is:
(A) $(2,9,0)$
(B) $(-2,9,0)$
(C) $(-2,-9,0)$
(D) $(2,-9,0)$

Ans. Option (B) is correct.
Explanation: The line joining the given point is:
$\frac{x-1}{1}=\frac{y-3}{-2}=\frac{z-6}{2}=\lambda$
Let $(\lambda+1,-2 \lambda+3,2 \lambda+6)$ be a point on the line.
Given, the point meets at $X Y$-plane, so Z-coordinate will be zero.

$$
\begin{aligned}
\therefore & & 2 \lambda+6 & =0 \\
\Rightarrow & & \lambda & =-3
\end{aligned}
$$

\therefore Point is $(-2,9,0)$
Q.4. If a line makes angles $\frac{\pi}{4}, \frac{3 \pi}{4}$ with X -axis and

Y -axis respectively, then the angle which it makes with Z-axis is:
(A) 0°
(B) π
(C) both (A) and (B)
(D) $\frac{\pi}{2}$

Ans. Option (D) is correct.
Explanation: We have,

$$
\left.\begin{array}{rlrl}
& \cos ^{2} \frac{\pi}{4}+\cos ^{2} \frac{3 \pi}{4}+\cos ^{2} \gamma=1 \\
& \Rightarrow & & \frac{1}{2}+\frac{1}{2}+\cos ^{2} \gamma
\end{array}\right)=1
$$

Q. 5. The vector equation for the line passing through the points $(-1,0,2)$ and $(3,4,6)$ is:
(A) $\vec{r}=(\hat{i}+2 \hat{k})+\lambda(4 \hat{i}+4 \hat{j}+4 \hat{k})$
(B) $\vec{r}=(\hat{i}-2 \hat{k})+\lambda(4 \hat{i}+4 \hat{j}+4 \hat{k})$
(C) $\vec{r}=(-\hat{i}+2 \hat{k})+\lambda(4 \hat{i}+4 \hat{j}+4 \hat{k})$
(D) $\vec{r}=(-\hat{i}+2 \hat{k})+\lambda(4 \hat{i}-4 \hat{j}-4 \hat{k})$

Ans. Option (C) is correct.
Explanation: The vector equation of the line is given by:

$$
\begin{aligned}
\vec{r} & =\vec{a}+\lambda(\vec{b}-\vec{a}), x \in R \\
\vec{a} & =-\hat{i}+2 \hat{k} \\
\vec{b} & =3 \hat{i}+4 \hat{j}+6 \hat{k}
\end{aligned}
$$

Let
$\therefore \quad \vec{b}-\vec{a}=4 \hat{i}+4 \hat{j}+4 \hat{k}$
Therefore, the vector equation is

$$
\vec{r}=(-\hat{i}+2 \hat{k})+\lambda(4 \hat{i}+4 \hat{j}+4 \hat{k})
$$

Q. 6.. The acute angle between the lines $x-2=0$ and $\sqrt{3} x-y-2=0$ is
(A) 0°
(B) 30°
(C) 45°
(D) 60°

Ans. Option (B) is correct.
Explanation: Let the slope of the line $(x-2=0)$ is m_{1} So, $\quad m_{1}=\infty$

And, the slope of the line $(\sqrt{3} x-y-2=0)$ is m_{2}

$$
\begin{array}{ll}
\Rightarrow & \tan \theta=\left|\frac{m_{2}-m_{1}}{1+m_{1} \cdot m_{2}}\right| \\
\Rightarrow & \tan \theta=\left|\frac{\frac{m_{2}}{m_{1}}-1}{\frac{1}{m_{1}}+m_{2}}\right| \\
\Rightarrow & \tan \theta=\frac{1}{\sqrt{3}} \\
\Rightarrow & \theta=30^{\circ}
\end{array}
$$

Q. 7. If the line $\frac{x-2}{2 k}=\frac{y-3}{3}=\frac{z+2}{-1}$ and $\frac{x-2}{8}=\frac{y-3}{6}$ $=\frac{z+2}{-2}$ are parallel, value of k is:
(A) -2
(B) $\frac{1}{2}$
(C) 2
(D) 4

Ans. Option (C) is correct.
Explanation: Given lines are $\frac{x-2}{2 k}=\frac{y-3}{3}=\frac{z+2}{-1}$ and $\frac{x-2}{8}=\frac{y-3}{6}=\frac{z+2}{-2}$
The direction ratio of the first line is $(2 k, 3,-1)$ and the direction ratio of second line is $(8,6,-2)$ Lines are parallel;

$$
\begin{array}{ll}
\text { So, } & \frac{2 k}{8}=\frac{3}{6}=\frac{-1}{-2} \\
\Rightarrow & \frac{k}{4}=\frac{1}{2}=\frac{1}{2}
\end{array}
$$

$$
\therefore \quad k=2
$$

Q. 8. If lines $\frac{2 x-2}{2 k}=\frac{4-y}{3}=\frac{z+2}{-1}$ and $\frac{x-5}{1}=\frac{y}{k}=\frac{z+6}{4}$ are at right angles, then the value of k is:
(A) -2
(B) 0
(C) 2
(D) 4

Ans. Option (A) is correct.
Explanation: Given lines are $\frac{2 x-2}{2 k}=\frac{4-y}{3}=\frac{z+2}{-1}$
and $\frac{x-5}{1}=\frac{y}{k}=\frac{z+6}{4}$
Writing the above equation in standard form, we get
$\Rightarrow \quad \frac{2(x-1)}{2 k}=\frac{-(y-4)}{3}=\frac{z+2}{-1}$
$\Leftrightarrow \quad \frac{(x-1)}{k}=\frac{y-4}{-3}=\frac{z+2}{-1}$
Now, the direction ratio of the first line is $(k,-3,-1)$ and the direction ratio of second line is $(1, k, 4)$ Since, lines are perpendicular,

$$
\begin{array}{llrl}
& \therefore & (k \times 1)+(-3 \times k)+(-1 \times 4)=0 \\
\Rightarrow & k-3 k-4 & =0 \\
\Rightarrow & -2 k-4 & =0 \\
\therefore & & k & =-2
\end{array}
$$

SuBurchive trips QuFshions

Very Short Answer Type Questions

Q.1. Find the coordinates of the point where the line $\frac{x+3}{3}=\frac{y-1}{-1}=\frac{z-5}{-5}$ cuts the $X Y$ plane.

A 1 R\&U [CBSE SQP 2020-21]
Sol. $(0,0,0)$
[CBSE SQP Marking Scheme 2020-21]

Detailed Solution:

In the $X Y$ plane, $z=0$.
Hence the given equation becomes

$$
\begin{array}{rlrl}
& & \frac{x+3}{3} & =\frac{y-1}{-1}=1 \\
& & \frac{x+3}{3} & =1 \\
\Rightarrow & x & =0 \\
\Rightarrow & & \frac{y-1}{-1} & =1 \\
\Rightarrow & y & =0
\end{array}
$$

\therefore The required point is $(0,0,0)$.

Commonly Made Error

- Mostly students do not know how to find the point of intersection of a line and a plane.

Answering Tip

Learn the concepts of lines and planes thoroughly.
Q. 2. Find the vector equation of the line which passes through the point $(3,4,5)$ and is parallel to the vector $2 \hat{i}+2 \hat{j}-3 \hat{k}$.

R [CBSE Delhi Set-IIII, 2019]
Sol. $\vec{r}=(3 \hat{i}+4 \hat{j}+5 \hat{k})+\lambda(2 \hat{i}+2 \hat{j}-3 \hat{k})$
[CBSE Marking Scheme 2019]

Topper Answer, 2019

Sol.

$\vec{r}=\vec{a}+\lambda \vec{b}$	ene $\vec{a}=$ pesition rator of pt
$\vec{r}=(3 \hat{i}+4 \hat{j}+5 \hat{k}+\lambda(2 \hat{i}+2 \hat{i}-3 \hat{k})$	$\widehat{5}=$ poraud verlos

Alice $\vec{r}=(3+2 N) \hat{\hat{c}} \cdot(4+2 \lambda)^{n}+(5-3 N) \hat{k}$
Q.3. A line passes through the point with position vector $2 \hat{i}-\hat{j}+4 \hat{k}$ and is in the direction of the vector $\hat{i}+\hat{j}-2 \hat{k}$. Find the equation of the line in cartesian form.
[CBSE O.D. Set-I, 2019]
Sol. Equation of line are :

$$
\begin{equation*}
\frac{x-2}{1}=\frac{y+1}{1}=\frac{z-4}{-2} \tag{1}
\end{equation*}
$$

[CBSE Marking Scheme, 2019]

Detailed Solution :

Equation of a line passing through $\left(x_{1}, y_{1}, z_{1}\right)$ and parallel to line having direction ratios a, b, c is

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
$$

Since, the line passes through a point with position vector $2 \hat{i}-\hat{j}+4 \hat{k}$

$$
x_{1}=2, y_{1}=-1, z_{1}=4
$$

Also, line is in the direction of $\hat{i}+\hat{j}-2 \hat{k}$
Direction ratios : $a=1, b=1, c=-2$
Equation of line in cartesian form is :

$$
\begin{aligned}
& \frac{x-2}{1}=\frac{y-(-1)}{1}=\frac{z-4}{(-2)} \\
& \Rightarrow \quad \frac{x-2}{1}=\frac{y+1}{1}=\frac{z-4}{(-2)}
\end{aligned}
$$

Q.4. Find the cartesian equation of the line which passes through the point $(-2,4,-5)$ and is parallel to the line $\frac{x+3}{3}=\frac{4-y}{5}=\frac{z+8}{6}$.

A I R\&U[SQP 2016-17] [NCERT]
Sol. Given line $\frac{x+3}{3}=\frac{4-y}{5}=\frac{z+8}{6}$
[If two lines are parallel, then they both have proportional direction ratio] or $\quad \frac{x-(-3)}{3}=\frac{y-4}{-5}=\frac{z-(-8)}{6}$ $1 / 2$

Here, given point is $(-2,4,-5)$ with D.R's. $3,-5,6$ Therefore, cartesian equation of line will be :

$$
\frac{x+2}{a}=\frac{y-4}{b}=\frac{z+5}{c}
$$

or $\quad \frac{x+2}{3}=\frac{y-4}{-5}=\frac{z+5}{6}$
$1 / 2$
Q. 5. Find the vector equation for the line which passes through the point $(1,2,3)$ and is parallel to the line $\frac{x-1}{-2}=\frac{1-y}{3}=\frac{3-z}{-4}$.

R\&U [Outside Delhi Set I, II, III Comptt. 2016]

Q.6. If the lines $\frac{x-1}{-2}=\frac{y-4}{3 p}=\frac{z-3}{4} \quad$ and $\frac{x-2}{4 p}=\frac{y-5}{2}=\frac{z-1}{-7}$ are perpendicular to each other, then find the value of p.
(3) R\&U [S.Q.P. 2015]
Q. 7. The equation of a line is
$5 x-3=15 y+7=3-10 z$. Write the direction cosines of the line.

R\&U [All India 2015]
Sol. Given equations of a line is

$$
\begin{equation*}
5 x-3=15 y+7=3-10 z \tag{i}
\end{equation*}
$$

Let us first convert the equation in standard form

$$
\begin{equation*}
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c} \tag{ii}
\end{equation*}
$$

Let us divide Eq. (i) by LCM (coefficients of x, y and z), i.e., $\operatorname{LCM}(5,15,10)=30$
Now, the Eq. (i) becomes

$$
\begin{align*}
\frac{5 x-3}{30} & =\frac{15 y+7}{30}=\frac{3-10 z}{30} \\
\frac{5\left(x-\frac{3}{5}\right)}{30} & =\frac{15\left(y+\frac{7}{15}\right)}{30}=\frac{-10\left(z-\frac{3}{10}\right)}{30} \\
\frac{x-\frac{3}{5}}{6} & =\frac{y+\frac{7}{15}}{2}=\frac{z-\frac{3}{10}}{-3}
\end{align*}
$$

On comparing the above equation with Eq. (ii), we get $6,2,-3$ are the direction ratios of the given line. Now, the direction cosines of given line are
$\frac{6}{\sqrt{6^{2}+2^{2}+(-3)^{2}}}, \frac{2}{\sqrt{6^{2}+2^{2}+(-3)^{2}}}$ and
$\frac{-3}{\sqrt{6^{2}+2^{2}+(-3)^{2}}}$
ie., $\left(\frac{6}{7}, \frac{2}{7}, \frac{-3}{7}\right)$.

Short Answer Type Questions-I
 (2 marks each)

Q. 1. $\mathrm{A}(-1,3,2), \mathrm{B}(-2,3,-1), \mathrm{C}(-5,-4, p)$ and $\mathrm{D}(-2,-4$, $3)$, are four points in space. Lines $A B$ and $C D$ are parallel.
Find the value of \boldsymbol{p}. Show your work and give valid reason. A I [CBSE Practice Questions 2022]
Sol. Given, lines $A B$ and $C D$ are parallel

$$
\begin{equation*}
\overrightarrow{\mathrm{AB}}=(-2-(-1) \hat{i}+(3-3) \hat{j}+(-1-2) \hat{k} \tag{i}
\end{equation*}
$$

or $\overrightarrow{\mathrm{AB}}=-\hat{i}-3 \hat{k}$
and $\overrightarrow{\mathrm{CD}}=(-2-(-5)) \hat{i}+(-4-(-4)) \hat{j}+(3-p) \hat{k}$
or, $\quad \overrightarrow{\mathrm{CD}}=3 \hat{i}+(3-p) \hat{k}$
..(ii) $1 / 2$
We know that, if lines $\vec{a}=a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}$ and $\vec{b}=a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{k}$, are parallel then

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}
$$

Therefore, from eqs. (i) \& (ii), we get

$$
\frac{-1}{3}=\frac{-3}{3-p}
$$

$$
\begin{array}{cc}
\Rightarrow & 3-p=9 \\
\Rightarrow & p=3-9 \\
\Rightarrow & p=-6
\end{array}
$$

1
Q.2. Find the shortest distance between the following lines:
$\vec{r}=(\hat{i}+\hat{j}-\hat{k})+s(2 \hat{i}+\hat{j}+\hat{k})$
$\vec{r}=(\hat{i}+\hat{j}+2 \hat{k})+t(4 \hat{i}+2 \hat{j}+2 \hat{k})$ A R [SQP 2021-22]
Sol. Here, the lines are parallel. The shortest distance

$$
\begin{aligned}
& =\left|\frac{\left(\vec{a}_{2}-\vec{a}_{1}\right) \times \vec{b}}{|\vec{b}|}\right| \\
& =\frac{|(3 \hat{k}) \times(2 \hat{i}+\hat{j}+\hat{k})|}{\sqrt{4+1+1}} \quad 1+1 / 2 \\
(3 \hat{k}) \times(2 \hat{i}+\hat{j}+\hat{k}) & =\left|\begin{array}{lll}
\hat{i} & \hat{j} & \hat{k} \\
0 & 0 & 3 \\
2 & 1 & 1
\end{array}\right|=-3 \hat{i}+6 \hat{j}
\end{aligned}
$$

Hence, the required shortest distance

$$
=\frac{3 \sqrt{5}}{\sqrt{6}} \text { units }
$$

[CBSE Marking Scheme 2022]
Q.3. Find the value of k, so that the lines $x=-y=k z$ and $x-2=2 y+1=-z+1$ are perpendicular to each other.

U [CBSE Delhi Set II, 2020]

Topper Answer, 2020

Sol.

As they are perpendicular
$k-\frac{k}{2}-1=0$
$\frac{k}{2}=1 \quad \Rightarrow k=2$
Q.4. Find the acute angle between the lines and Sol. Vector in the direction of first line

$$
\frac{x-1}{4}=\frac{y+1}{-3}=\frac{z+10}{5}
$$

$$
\vec{b}=(3 \hat{i}+4 \hat{j}+5 \hat{k})
$$

Vector in the direction of second line

$$
\vec{d}=(4 \hat{i}-3 \hat{j}+5 \hat{k})
$$

R\&U [CBSE SQP, 2020]

Angle θ between two lines is given by

$$
\begin{array}{rlrl}
& \cos \theta & =\frac{\vec{b} \cdot \vec{d}}{|\vec{b}||\vec{d}|} \\
& \cos \theta & =\frac{(3 \hat{i}+4 \hat{j}+5 \hat{k}) \cdot(4 \hat{i}-3 \hat{j}+5 \hat{k})}{|(3 \hat{i}+4 \hat{j}+5 \hat{k})||(4 \hat{i}-3 \hat{j}+5 \hat{k})|} \mathbf{1} \\
\Rightarrow & \cos \theta & =\frac{12-12+25}{\sqrt{9+16+25} \sqrt{9+16+25}} \\
\Rightarrow & & \cos \theta & =\frac{25}{\sqrt{50} \sqrt{50}} \\
\Rightarrow & & \cos \theta & =\frac{1}{2} \\
\Rightarrow & & \theta & =\frac{\pi}{3}
\end{array}
$$

Q.5. Find the vector equation of the line passing through the point $A(1,2,-1)$ and parallel to the line $5 x-25=14-7 y=35 z$. R\&U [Delhi 2017]

Sol. Equation of given line is $\frac{x-5}{\frac{1}{5}}=\frac{y-2}{\frac{-1}{7}}=\frac{z}{\frac{1}{35}}$
Its DR's $\left[\frac{1}{5},-\frac{1}{7}, \frac{1}{35}\right]$ or $[7,-5,1]$
Equation of required line is

$$
\hat{r}=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(7 \hat{i}-5 \hat{j}+\hat{k})
$$

[CBSE Marking Scheme, 2017]
Q. 6. Find the angle between the lines $\frac{x-1}{2}=\frac{y+1}{3}=$

$$
\frac{z-1}{4} \text { and } \frac{x+1}{-3}=\frac{y-2}{2}=\frac{z-1}{0}
$$

Sol. Equation are

$$
\begin{aligned}
\frac{x-1}{2} & =\frac{y+1}{3}=\frac{z-1}{4} \\
\frac{x+1}{-3} & =\frac{y-2}{2}=\frac{z-1}{0} \\
a_{1} & =2, b_{1}=3, c_{1}=4 \\
a_{2} & =-3, b_{2}=2, c_{2}=0
\end{aligned}
$$

$$
\begin{align*}
a_{1} a_{2} & +b_{1} b_{2}+c_{1} c_{2} \\
& =2 \times-3+3 \times 2+4 \times 0 \\
& =-6+6+0=0 \tag{1}
\end{align*}
$$

\therefore The lines are perpendicular to each other.
Q. 7. Find the equation of line passing through (1, 1, 2) and $(2,3,-1)$.

Q. 8. Show that the points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.
Sol. Let $A(2,3,4), B(-1,-2,1), C(5,8,7)$
Direction ratios of line joining points A and B are
$<-1-2,-2-3,1-4>$ or $<-3,-5,-3>\quad 1 / 2$
Direction ratios of line joining points B and C are
$\langle 5-(-1), 8-(-2), 7-1\rangle$ or $\langle 6,10,6\rangle \quad 1 / 2$
Let $\quad a_{1}=-3, b_{1}=-5, c_{1}=-3$
and $\quad a_{2}=6, b_{2}=10, c_{2}=6$
Now, $\quad \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
i.e., $\quad \frac{-3}{6}=\frac{-5}{10}=\frac{-3}{6}$
or $\quad \frac{-1}{2}=\frac{-1}{2}=\frac{-1}{2}$
1

Hence, given points are collinear.

Short Answer Type Questions-II
 (3 marks each)

Q. 1. The vector form of equations of two lines, l_{1} and l_{2} are
$l_{1}: \vec{r}=2 \hat{i}-\hat{k}+\lambda(-2 \hat{j}+\hat{k})$
$l_{2}: \vec{r}=\hat{i}+3 \hat{k}+2 \hat{k}+\mu(\hat{i}-2 \hat{k})$
Show that l_{1} and l_{2} are skew lines.
[CBSE Practice Questions, 2022]
Sol. On comparing the given lines with
$\vec{r}=a_{1}+\lambda b_{1}$ and $r_{2}=a_{2}+\lambda b_{2}$, we get
$a_{1}=2 \hat{i}-\hat{k}$ and $b_{1}=(-2 \hat{i}+\hat{k})$
$a_{2}=\hat{i}+3 \hat{j}+2 \hat{k}$ and $b_{2}=(\hat{i}-2 \hat{k})$
Now, $\vec{a}_{2}-\vec{a}_{1}=(1-2) \hat{i}+(3-0) \hat{j}+(2-(-1)) \hat{k}$
or, $\quad \vec{a}_{2}-\vec{a}_{1}=-\hat{i}+3 \hat{j}+3 \hat{k}$
$\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 0 & -2 & 1 \\ 1 & 0 & -2\end{array}\right|$
$=\hat{i}(4-0)-\hat{j}(0-1)+\hat{k}(0-(-2))$
$=4 \hat{i}+\hat{j}+2 \hat{k}$
$\therefore\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)=(-\hat{i}+3 \hat{j}+3 \hat{k}) \cdot(4 \hat{i}+\hat{j}+2 \hat{k})$

$$
=-4+3+6=5
$$

Since, $\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right) \neq 0$, then lines are not intersecting.

1
Also, given lines are not parallel because

$$
\frac{0}{1} \neq \frac{-2}{0} \neq \frac{1}{-2}
$$

Since, the given lines are neither parallel nor intersecting, hence skew lines.
Q. 2. Find the value of λ, so that the lines $\frac{1-x}{3}=\frac{7 y-14}{\lambda}$

$$
=\frac{z-3}{2} \text { and } \frac{7-7 x}{3 \lambda}=\frac{y-5}{1}=\frac{6-z}{5} \text { are at right angles. }
$$

Also, find whether the lines are intersecting or not.
R\&U [CBSE Delhi Set-III 2019]

Sol. Given lines are :

$$
\frac{x-1}{-3}=\frac{y-2}{\left(\frac{\lambda}{7}\right)}=\frac{z-3}{2} \text { and } \frac{x-1}{-\left(\frac{3 \lambda}{7}\right)}=\frac{y-5}{1}=\frac{z-6}{-5}
$$

As lines are perpendicular,
$(-3)\left(\frac{-3 \lambda}{7}\right)+\left(\frac{\lambda}{7}\right)(1)+2(-5)=0 \Rightarrow \lambda=7$
So, lines are
$\frac{x-1}{-3}=\frac{y-2}{1}=\frac{z-3}{2}$ and $\frac{x-1}{-3}=\frac{y-5}{1}=\frac{z-6}{-5}$
$1 / 2$

Consider
$\Delta=\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|=\left|\begin{array}{ccc}0 & 3 & 3 \\ -3 & 1 & 2 \\ -3 & 1 & -5\end{array}\right|=-63$
as $\Delta \neq 0 \Rightarrow$ lines are not intersecting.
[CBSE Marking Scheme, 2019] (Modified)

Detailed Solution :

Topper Answer, 2019

Line	Line II
$\frac{1-x}{3}=\frac{7 y-14}{\lambda}=\frac{z-3}{2}$	$\frac{7-7 x}{3 \lambda}=\frac{y-5}{1}=\frac{6-z}{5}$

Direction ratios are $\left(-3, \frac{A}{7}, 2\right)$ and $\left(\frac{-3 \Lambda}{7}, 1,-5\right)$ respectively
For lines to be $1, \overrightarrow{a_{1}} \cdot \overrightarrow{a_{2}}=0 \quad \overrightarrow{a_{1}} \cdot \vec{b}=0 \quad$ where $\frac{(\vec{a}, \vec{b} \text { are lld }}{a_{1} a_{1}+a_{1} b_{2}+a_{3} b_{3}=0}$
$\frac{91}{7}+\frac{\lambda}{7}-10=0$
$\frac{10 \lambda}{7}=10$
$\Lambda=7$
\therefore Fo: $N-7$, lines are
Any point of lire I is $(-3 \beta+1, \beta+2,2 \beta+3)$
arrive If is $(-3 \mu+1, \mu+5,-5 \mu+6)$
For lines to intersect, they should be equal
$-3 \beta+1=-3 \mu+1 \quad \mu+5=\beta+2 \quad 2 \beta+3=-5 \mu+6$
$3 \mu-3 \beta=0 \quad \mu-\beta+3=0-(3) \quad 2 \beta+5 \mu=3-(2)$
$\mu=\beta-(1)$
$=(2)$
$7 \mu=3$
$\operatorname{In} \frac{\left.1-\frac{1}{\mu=3 / 7} \right\rvert\, \beta=\frac{3}{7}}{\frac{3}{7}-\frac{3}{7}+3 \neq 0}$
\therefore values donor satisfy epn(3)
Q.3. If the lines $\frac{x-1}{-3}=\frac{y-2}{2 \lambda}=\frac{z-3}{2}$ and $\frac{x-1}{3 \lambda}=\frac{y-1}{2}$ $=\frac{z-6}{-5}$ are perpendicular, find the value of λ. Hence find whether the lines are intersecting or not.
[CBSE OD Set-I, 2019]
Q. 4. Find the vector equation of the line joining $(1,2,3)$ and $(-3,4,3)$ and show that it is perpendicular to the Z-axis.

R\&U [CBSE SQP 2018-19]
Sol. Vector equation of the line passing through $(1,2,3)$ and $(-3,4,3)$ is $\vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a})$ where $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{b}=-3 \hat{i}+4 \hat{j}+3 \hat{k}$

$$
\begin{equation*}
\Rightarrow \quad \vec{r}=\hat{i}+2 \hat{j}+3 \hat{k}+\lambda(-4 \hat{i}+2 \hat{j}) \tag{1}
\end{equation*}
$$

Equation of Z-axis is

$$
\begin{equation*}
\vec{r}=\mu \hat{k} \tag{1}
\end{equation*}
$$

Since $(-4 \hat{i}+2 \hat{j}) \hat{k}=0$
\therefore line (1) is \perp to Z-axis.
[CBSE Marking Scheme 2018-19] (Modified)
Q. 5. Find the equation of the line which intersects the lines $\frac{x+2}{1}=\frac{y-3}{2}=\frac{z+1}{4}$ and $\frac{x-1}{2}=\frac{y-2}{3}=$ $\frac{z-3}{4}$ and passes through the point $(1,1,1)$.

R\&U [SQP 2017-18]
Sol. General point on the first line is

$$
(\lambda-2,2 \lambda+3,4 \lambda-1)
$$

General point on the second line is

$$
(2 \mu+1,3 \mu+2,4 \mu+3) . \quad 1 / 2
$$

Direction ratios of the required line are

$$
(\lambda-3,2 \lambda+2,4 \lambda-2)
$$

Direction rations of the same line may be

$$
(2 \mu, 3 \mu+1,4 \mu+2)
$$

Therefore, $\frac{\lambda-3}{2 \mu}=\frac{2 \lambda+2}{3 \mu+1}=\frac{4 \lambda-2}{4 \mu+2}$
or $\frac{\lambda-3}{2 \mu}=\frac{2 \lambda+2}{3 \mu+1}=\frac{2 \lambda-1}{2 \mu+1}=k$ (say)
or $\lambda-3=2 \mu k, 2 \lambda+2=(3 \mu+1) k, 2 \lambda-1=(2 \mu+1) k$
or $\frac{\lambda-3}{2}=\mu k, 2 \lambda+2=3\left(\frac{\lambda-3}{2}\right)+k$,
$2 \lambda-1=2\left(\frac{\lambda-3}{2}\right)+k$
or $k=\frac{4 \lambda+4-3 \lambda+9}{2}=\lambda+2$ or $\lambda=9, \mu=\frac{3}{11}$,
which satisfy (1).

Therefore, the direction ratios of the required line are $(6,20,34)$ or, $(3,10,17)$.
$1 / 2$
Hence, the required equation of line is

$$
\frac{x-1}{3}=\frac{y-1}{10}=\frac{z-1}{17}
$$

[CBSE Marking Scheme, 2017] (Modified)
Q. 6. Find the value of p, so that the lines
$l_{1}: \frac{1-x}{3}=\frac{7 y-14}{p}=\frac{z-3}{2}$
and $l_{2}: \frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$
are perpendicular to each other.
Also find the equation of a line passing through a point $(3,2,-4)$ and parallel to line l_{1}.

R\&U [NCERT] [Delhi Comptt., 2017]
Sol. Given lines can be written as

$$
l_{1}=\frac{x-1}{-3}=\frac{y-2}{\frac{p}{7}}=\frac{z-3}{2}
$$

and

$$
l_{2}=\frac{x-1}{\left(\frac{-3 p}{7}\right)}=\frac{y-5}{1}=\frac{z-6}{-5}
$$

Since the lines are perpendicular,

$$
\begin{equation*}
\therefore(-3)\left(-\frac{3 p}{7}\right)+\left(\frac{p}{7}\right)(1)+(2)(-5)=0 \tag{1}
\end{equation*}
$$

or $\quad p=7$
Equation or line passing through $(3,2,-4)$ and parallel to l_{1} is

$$
\begin{equation*}
\frac{x-3}{-3}=\frac{y-2}{1}=\frac{z+4}{2} \tag{1}
\end{equation*}
$$

[CBSE Marking Scheme 2017] (Modified)
Q. 7. Find the co-ordinates of the foot of perpendicular drawn from a point $A(1,8,4)$ to the line joining the points $B(0,-1,3)$ and $C(2,-3,-1)$.

R\&U [NCERT Exemplar][O.D. Comptt. 2017]

Sol.

Equation of line passing through B and C is

$$
\begin{array}{ll}
& \frac{x}{2}=\frac{y+1}{-2}=\frac{z-3}{-4} \\
\text { or } & \frac{x}{1}=\frac{y+1}{-1}=\frac{z-3}{-2} \tag{1}
\end{array}
$$

Any point D on $B C$ can be $[\lambda,-\lambda-1,-2 \lambda+3]$ for some value of λ.
\therefore Direction ratios of $A D$ are $(\lambda-1,-\lambda-9,-2 \lambda-1) \frac{1}{2}$ $A D \perp B C$ or $1(\lambda-1)-1(-\lambda-9)-2(-2 \lambda-1)=0 \quad 1 / 2$

$$
\text { or } \quad \lambda=-\frac{5}{3}
$$

$\therefore D$ is $\left(-\frac{5}{3}, \frac{2}{3}, \frac{19}{3}\right)$
[CBSE Marking Scheme, 2017] (Modified)
Q. 8. Prove that the line through $A(0,-1,-1)$ and $B(4,5,1)$ intersects the line through $C(3,9,4)$ and D (-4, 4, 4).

R\&U [Foreign 2016]
Sol. The equation of line through $A(0,-1,-1)$ and $B(4,5,1)$ is

$$
\begin{align*}
\frac{x-0}{4-0} & =\frac{y+1}{5+1}=\frac{z+1}{1+1} \\
\text { i.e., } \quad \frac{x}{4} & =\frac{y+1}{6}=\frac{z+1}{2} \tag{i}
\end{align*}
$$

and equation of line through $C(3,9,4)$ and $D(-4,4,4)$ is

$$
\begin{align*}
\frac{x-3}{-4-3} & =\frac{y-9}{4-9}=\frac{z-4}{0} \\
\text { i.e., } \quad \frac{x-3}{-7} & =\frac{y-9}{-5}=\frac{z-4}{0} \tag{ii}
\end{align*}
$$

We know that, the lines

$$
\begin{aligned}
& \frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}} \text { and } \\
& \frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c^{2}} \text { will intersect, } \\
& \text { if }\left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|=0
\end{aligned}
$$

\therefore The given lines will intersect, if

$$
\left|\begin{array}{ccc}
3-0 & 9-(-1) & 4-(-1) \\
4 & 6 & 2 \\
-7 & -5 & 0
\end{array}\right|=0
$$

Now consider,

$$
\begin{align*}
& \left|\begin{array}{ccc}
3-0 & 9-(-1) & 4-(-1) \\
4 & 6 & 2 \\
-7 & -5 & 0
\end{array}\right|=\left|\begin{array}{ccc}
3 & 10 & 5 \\
4 & 6 & 2 \\
-7 & -5 & 0
\end{array}\right| \\
& =3(0+10)-10(0+14)+5(-20+42) \\
& =30-140+110=0 \tag{1}
\end{align*}
$$

Hence, the given lines intersect.
Q. 9. Find the shortest distance between the lines:

$$
\begin{aligned}
\vec{r} & =(t+1) \hat{i}+(2-t) \hat{j}+(1+t) \hat{k} \\
\vec{r} & =(2 s+2) \hat{i}-(1-s) \hat{j}+(2 s-1) \hat{k}
\end{aligned}
$$

A 1 A [Delhi Set I, II, III, Comptt. 2016]
Q. 10. Find the vector and cartesian equations of line through the point $(1,2,-4)$ and perpendicular to the two lines
$\vec{r}=(8 \hat{i}-9 \hat{j}+10 \hat{k})+\lambda(3 \hat{i}-16 \hat{j}+7 \hat{k})$ and
$\vec{r}=15 \hat{i}-29 \hat{j}+5 \hat{k}+\mu(3 \hat{i}+8 \hat{j}-5 \hat{k})$ R\&U[NCERT]
[OD 2015] [Delhi Set I, II, III 2016]
Sol. Given Lines :

$$
\begin{aligned}
& \vec{r}=(8 \hat{i}-9 \hat{j}+10 \hat{k})+\lambda(3 \hat{i}-16 \hat{j}+7 \hat{k}) \\
& \vec{r}=15 \hat{i}-29 \hat{j}+5 \hat{k}+\mu(3 \hat{i}+8 \hat{j}-5 \hat{k})
\end{aligned}
$$

The required line passes through the point (1, 2, $-4)$ and is perpendicular to the above two lines.
Let a, b, c denote the direction ratios of the required line, then using $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$, we get

$$
\begin{array}{rlrl}
3 a-16 b+7 c & =0 & 1 / 2+1 / 2 \\
3 a+8 b-5 c & =0 &
\end{array}
$$

and
Solving,

$$
\frac{a}{(80-56)}=\frac{-b}{(-15-21)}=\frac{c}{24+48}=\lambda(\text { Let })
$$

or $\quad \frac{a}{24}=\frac{b}{36}=\frac{c}{72}=\lambda$
or $\quad \frac{a}{2}=\frac{b}{3}=\frac{c}{6}=(12 \lambda)=\lambda^{\prime} \quad 1 / 2$
\therefore The equation of the required line in the vector form :

$$
\vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda^{\prime}(2 \hat{i}+3 \hat{j}+6 \hat{k}) \quad 1 / 2
$$

Cartesian from : $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6}$
$1 / 2$

Long Answer Type Questions (5 marks each)

Q. 1. Find the shortest distance between the lines

$$
\vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k})
$$

and $\vec{r}=5 \hat{i}-2 \hat{j}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k})$
If the lines intersect find their point of intersection.
A1 R\&U [CBSE SQP 2020-21]
Sol. We have

$$
\begin{aligned}
& a_{1}=3 \hat{i}+2 \hat{j}-4 \hat{k} \\
& b_{1}=\hat{i}+2 \hat{j}+2 \hat{k} \\
& a_{2}=5 i-2 j \\
& b_{2}=3 \hat{i}+2 \hat{j}+6 \hat{k}
\end{aligned}
$$

$$
\begin{align*}
\overrightarrow{a_{2}}-\overrightarrow{a_{1}} & =2 \hat{i}-4 \hat{j}+4 \hat{k} \tag{1}\\
\overrightarrow{b_{1}} \times \overrightarrow{b_{2}} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 2 & 2 \\
3 & 2 & 6
\end{array}\right| \\
& =\hat{i}(12-4)-\hat{j}(6-6)+\hat{k}(2-6)
\end{align*}
$$

1

$$
\begin{equation*}
\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}=8 \hat{i}+0 \hat{j}-4 \hat{k}=8 \hat{i}-4 \hat{k} \tag{1}
\end{equation*}
$$

$\because\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)=16-16=0$
\therefore The lines are intersecting and the shortest distance between the lines is 0 .
Now for point of intersection

$$
\begin{align*}
& 3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k}) \\
& =5 \hat{i}-2 \hat{j}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k}) \\
& \Rightarrow \quad \tag{i}\\
& 3+\lambda=5+3 \mu \tag{ii}\\
& 2+2 \lambda= \tag{iii}
\end{align*}
$$

Solving (i) and (ii) we get $\mu=-2$ and $\lambda=-4$
Substituting in equation of line we get

$$
\begin{aligned}
\vec{r} & =5 i-2 j+(-2)(3 \hat{i}+2 \hat{j}-6 \hat{k}) \\
& =-\hat{i}-6 \hat{j}-12 \hat{k}
\end{aligned}
$$

Point of intersection is $(-1,-6,-12)$
[CBSE SQP Marking Scheme 2020-21]

Commonly Made Error

Some students write the wrong values of a_{1}, a_{2} and b_{1}, b_{2} that is why the answer of shortest distance is wrongly calculated.

Answering Tips

- First student should write the question in standard form $\vec{r}+\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}, \vec{r}=\overrightarrow{a_{2}}+\mu_{1} \overrightarrow{b_{2}}$ then solve the shortest distance.
Q. 2. Find the vector and cartesian equations of the line which is perpendicular to the lines with equations $\frac{x+2}{1}=\frac{y-3}{2}=\frac{z+1}{4}$ and $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$
and passes through the point $(1,1,1)$. Also find the angle between the given lines.

R\&U [CBSE Delhi Set I, II, III-2020]

Sol. Let equation of required line is

$$
\begin{equation*}
\frac{x-1}{a}=\frac{y-1}{b}=\frac{z-1}{c} \tag{i}
\end{equation*}
$$

Since the line is perpendicular to

$$
\frac{x+2}{1}=\frac{y-3}{2}=\frac{z+1}{4}
$$

and $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$,

$$
\begin{array}{r}
a+2 b+4 c=0 \\
2 a+3 b+4 c=0 \tag{iii}
\end{array}
$$

Solving (ii) and (iii),

$$
\frac{a}{-4}=\frac{b}{4}=\frac{c}{-1}
$$

\therefore DR's of line in cartesian form is : $-4,4,-1 \quad 1 / 2$ Equation of line in Cartesian form is :

$$
\begin{equation*}
\frac{x-1}{-4}=\frac{y-1}{4}=\frac{z-1}{-1} \tag{1}
\end{equation*}
$$

Vector form of line is

$$
\vec{r}=(\hat{i}+j+k)+\lambda(-4 \hat{i}+4 j-k) \quad \mathbf{1}
$$

Let θ be the angle between given lines.

$$
\begin{aligned}
\cos \theta & =\frac{1(2)+2(3)+4(4)}{\sqrt{1+4+16} \sqrt{4+9+16}} \\
& =\frac{24}{\sqrt{21} \sqrt{29}} \\
\therefore \quad \theta & =\cos ^{-1}\left(\frac{24}{\sqrt{609}}\right) \quad 1+1 / 2
\end{aligned}
$$

[CBSE Marking Scheme 2020] (Modified)

Commonly Made Error

Most often students get wrong with the conditions for perpendicularity.

Answering Tips

The angle between lines and their various conditions should be learned thoroughly.
Q. 3. Find the foot of perpendicular from $P(1,2,-3)$ to the line $\frac{x+1}{2}=\frac{y-3}{-2}=\frac{z}{-1}$. Also, find the image of P in the given line.

[^0]
Case based MCQs

I. Read the following text and answer the following questions on the basis of the same:
The equation of motion of a missile are $x=3 t$, $y=-4 t, z=t$, where the time ' t ' is given in seconds, and the distance is measured in kilometres.
[CBSE QB 2021]

Q.1. What is the path of the missile?
(A) Straight line
(B) Parabola
(C) Circle
(D) Ellipse

Ans. Option (A) is correct.
Q. 2. Which of the following points lie on the path of the missile at $t=2$ second ?
(A) $(6,8,2)$
(B) $(6,-8,-2)$
(C) $(6,-8,2)$
(D) $(-6,-8,2)$

Ans. Option (C) is correct.
Explanation: $(6,-8,2)$ point lie on the path of the missile.

$$
\begin{array}{lrl}
\because & x & =3 t, y=-4 t, z=t \\
\text { at } & t & =2 \\
& x & =6, y=-8, z=2 \\
\text { i.e., }(6,-8,2) &
\end{array}
$$

Q.3. At what distance will the rocket be from the starting point $(0,0,0)$ in 5 seconds?
(A) $\sqrt{550} \mathrm{kms}$
(B) $\sqrt{650} \mathrm{kms}$
(C) $\sqrt{450} \mathrm{kms}$
(D) $\sqrt{750} \mathrm{kms}$

Ans. Option (B) is correct.
Explanation: Here,

$$
\begin{aligned}
t & =5 \text { seconds } \\
x & =3 t=3 \times 5=15 \\
y & =-4 t=-4 \times 5=-20 \\
z & =t=5 \\
(x, y, z) & \equiv(15,-20,5)
\end{aligned}
$$

Distancefrom starting point $(0,0,0)$

$$
\begin{aligned}
& =\left|\sqrt{(15-0)^{2}+(-20-0)^{2}+(5-0)^{2}}\right| \\
& =|\sqrt{225+400+25}| \\
& =\sqrt{650} \mathrm{kms}=5 \sqrt{26} \mathrm{kms}
\end{aligned}
$$

Q. 4. If the position of rocket at a certain instant of time is $(5,-8,10)$, then what will be the height of the rocket from the ground? (The ground is considered as the $X Y$-plane).
(A) 12 km
(B) 11 km
(C) 20 km
(D) 10 km

Ans. Option (D) is correct.
Explanation: Height of the rocket from the ground (i.e., $X Y$-plane)

$$
=10 \mathrm{~km}
$$

Q. 5. The equation of Y-axis in space are
(A) $x=0, y=0$
(B) $x=0, z=0$
(C) $y=0, z=0$
(D) $y=0$

Ans. Option (B) is correct.
Explanation: As on the Y-axis, X-coordinate and Z-coordinates are zeroes.
II. Read the following text and answer the following questions on the basis of the same:
Rohan wants to prepare a model for the science exhibition. He wanted to show something about the forces. He prepared a model for picking heavy object as shown below, where the forces in the cable are given.

Q.1. The coordinates of points A and E are:
(A) $(8,-6,0)$ and $(0,0,24)$
(B) $(8,6,0)$ and $(0,0,24)$
(C) $(6,-8,0)$ and $(0,24,0)$
(D) $(6,-8,0)$ and $(8,6,24)$

Ans. Option (A) is correct.
Explanation: From the given figure, it is clear that the coordinates of points A and E are $(8,-6,0)$ and $(0,0,24)$ respectively.
Q.2. The cartesian equation of line along EA is
(A) $\frac{x}{-4}=\frac{y}{3}=\frac{z}{12}$
(B) $\frac{x}{-4}=\frac{y}{3}=\frac{z-24}{12}$
(C) $\frac{x}{-3}=\frac{y}{4}=\frac{z-12}{12}$
(D) $\frac{x}{3}=\frac{y}{4}=\frac{z-24}{12}$

Ans. Option (B) is correct.
Explanation: Since, coordinates of A and E are (8, $-6,0)$ and ($0,0,24$).
Thus, the equation of line passing through $(8,-6,0)$ and $(0,0,24)$ is:

$$
\begin{aligned}
\frac{x-0}{8-0} & =\frac{y-0}{-6-0} \\
& =\frac{z-24}{0-24} \\
\Rightarrow \quad \frac{x}{8} & =\frac{y}{-6} \\
& =\frac{z-24}{-24} \\
\Rightarrow \quad \frac{x}{-4} & =\frac{y}{3} \\
& =\frac{z-24}{12}
\end{aligned}
$$

Q.3. The vector ED is
(A) $8 \hat{i}-6 \hat{j}+24 \hat{k}$
(B) $-8 \hat{i}-6 \hat{j}+24 \hat{k}$
(C) $-8 \hat{i}-6 \hat{j}-24 \hat{k}$
(D) $8 \hat{i}+6 \hat{j}+24 \hat{k}$

Ans. Option (C) is correct.
Explanation: Here, coordinates of D and E are $(-8$, $-6,0)$ and ($0,0,24$).
\therefore Vector $\overline{\mathrm{ED}}$ is $(-8-0) \hat{i}+(-6-0) \hat{j}+(0-24) \hat{k}$
i.e., $-8 \hat{i}-6 \hat{j}-24 \hat{k}$
Q.4. The length of the cable EB is
(A) 24 units
(B) 26 units
(C) 27 units
(D) 25 units

Ans. Option (B) is correct.
Explanation: Here, coordinates of B and E are (8, 6, 0) and ($0,0,24$).
\therefore Length of cable,

$$
\begin{aligned}
\mathrm{EB} & =\left|\sqrt{(8-0)^{2}+(6-0)^{2}+(0-24)^{2}}\right| \\
& =|\sqrt{64+36+576}|=26 \text { units }
\end{aligned}
$$

Q. 5. The sum of all vectors along the cables is
(A) $96 \hat{i}$
(B) $96 \hat{j}$
(C) $-96 \hat{k}$
(D) $96 \hat{k}$

Ans. Option (C) is correct.
Explanation: Sum of all vectors along the cables
$=\overrightarrow{\mathrm{EA}}+\overrightarrow{\mathrm{EB}}+\overrightarrow{\mathrm{EC}}+\overrightarrow{\mathrm{ED}}$
$=(8 \hat{i}-6 \hat{j}-24 \hat{k})+(8 \hat{i}+6 \hat{j}-24 \hat{k})+(-8 \hat{i}+6 \hat{j}-24 \hat{k})$ $+(-8 \hat{i}-6 \hat{j}-24 \hat{k})$
$=-96 \hat{k}$

Case based Subjective Questions

I. Read the following text and answer the following questions on the basis of the same:
A pillar is to be constructed on a field. Mahesh is an Engineer for that project. This was Mahesh's first project after completing his Engineering. He draws the following diagram of that pillar for the approval.
Consider the following diagram, where the forces in the cable are given.

Q. 1. Find the equation of the line along the cable AD.

Sol. From the given figure, it is clear that the coordinates of points A and D are $(8,10,0)$ and ($0,0,30$), respectively.

1
Thus, the equation of line passing through $(8,10,0)$ and $(0,0,30)$ is:

$$
\begin{array}{rlrl}
& & \frac{x-0}{8-0} & =\frac{y-0}{10-0}=\frac{z-30}{0-30} \\
\Rightarrow & \frac{x}{8} & =\frac{y}{10}=\frac{z-30}{-30} \\
\Rightarrow & \frac{x}{4} & =\frac{y}{5}=\frac{z-30}{-15} \\
\Rightarrow & \frac{x}{4} & =\frac{y}{5}=\frac{30-z}{15} \tag{1}
\end{array}
$$

Q. 2. Find the sum of the distances $O A, O B$ and $O C$.

Sol. Here, Coordinates of $O=(0,0,0)$
Coordinates of $\mathrm{A}=(8,10,0)$
Coordinates of $B=(-6,4,0)$
Coordinates of $C=(15,-20,0)$
Also,

$$
\begin{aligned}
& \mathrm{OA}=\left|\sqrt{8^{2}+10^{2}}\right|=\sqrt{164} \\
& \begin{aligned}
\mathrm{OB} & =\left|\sqrt{6^{2}+4^{2}}\right| \\
& =|\sqrt{36+16}|=\sqrt{52}
\end{aligned}
\end{aligned}
$$

and

$$
\begin{align*}
\mathrm{OC} & =\left|\sqrt{15^{2}+20^{2}}\right| \\
& =|\sqrt{225+400}| \\
& =\sqrt{625}=25 \tag{1}
\end{align*}
$$

\therefore The sum of the distances OA, OB and OC

$$
=\sqrt{164}+\sqrt{52}+25
$$

$1 / 2$
II. Read the following text and answer the question on the basis of the same.
A motor cycle race was organized in a town, where the maximum speed limit was set by the organizers. No participant are allowed to cross the specified speed limit, but
Two motorcycles A and B are running at the speed more than allowed speed on the road along the lines $\vec{r}=\lambda(\hat{i}+2 \hat{j}-\hat{k})$ and $\vec{r}=3 \hat{i}+3 \hat{j}+\mu(2 \hat{i}+\hat{j}+\hat{k})$, respectively.

Q.1. Find the Cartesian equation of the line along which motorcycle A is running.
Sol. The line along which motorcycle A is running, is, $\vec{r}=\lambda(\hat{i}+2 \hat{j}-\hat{k})$, which can be rewritten as

$$
\begin{array}{ll}
& (x \hat{i}+y \hat{j}+z \hat{k})=\lambda \hat{i}+2 \lambda \hat{j}-\lambda \hat{k} \\
\Rightarrow & x \\
\Rightarrow & \frac{x}{1}=\lambda, y=2 \lambda, z=-\lambda \tag{1}\\
\Rightarrow &
\end{array}
$$

Thus, the required cartesian equation is $\frac{x}{1}=\frac{y}{2}=\frac{z}{-1}$
Q. 2. Find the shortest distance between the lines. 2

Sol. Here, $\vec{a}_{1}=0 \hat{i}+0 \hat{j}+0 \hat{k}, \vec{a}_{2}=3 \hat{i}+3 \hat{j}, \vec{b}_{1}=\hat{i}+2 \hat{j}-\hat{k}$,

$$
\begin{aligned}
& \qquad \vec{b}_{2}=2 \hat{i}+\hat{j}+\hat{k} \\
& \therefore \vec{a}_{2}-\vec{a}_{1}=3 \hat{i}+3 \hat{j} \\
& \text { and } \vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 2 & -1 \\
2 & 1 & 1
\end{array}\right|=3 \hat{i}-3 \hat{j}-3 \hat{k}
\end{aligned}
$$

Now, $\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)=(3 \hat{i}+3 \hat{j}) \cdot(3 \hat{i}-3 \hat{j}-3 \hat{k})$

$$
=9-9=0
$$

Hence, shortest distance between the given lines is 0 .

Solutions for Practice Questions (Topic-1)

Very Short Answer Type Questions

6. $\sqrt{(-5)^{2}+(12)^{2}}=13$
[CBSE Marking Scheme, 2017]
7. We know that

$$
\begin{align*}
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma & =1 \\
\text { or } \cos ^{2} 90^{\circ}+\cos ^{2} 60^{\circ}+\cos ^{2} \theta & =1 \\
0+\frac{1}{4}+\cos ^{2} \theta & =1 \\
\cos \theta & =\frac{\sqrt{3}}{2} \\
\text { or } \quad \theta & =30^{\circ}
\end{align*}
$$

[CBSE Marking Scheme 2017]
8. Distance of the point (p, q, r) from the X-axis
$=$ Distance of the point (p, q, r) from the point $(p, 0,0)$
$=\left|\sqrt{q^{2}+r^{2}}\right|$ units
[CBSE Marking Scheme 2016]

Short Answer Type Questions-I

1. The given line is

$$
\begin{equation*}
\frac{x-3}{1}=\frac{y-\frac{1}{2}}{1}=\frac{2}{4} \tag{1}
\end{equation*}
$$

Its direction ratios are $<1,1,4>$ $1 / 2$ Its direction cosines are

$$
<\frac{1}{3 \sqrt{2}}, \frac{1}{3 \sqrt{2}}, \frac{4}{3 \sqrt{2}}>
$$

[CBSE Marking Scheme 2022]
4. Let $\mathrm{A}(-2,4,-5)$ and $\mathrm{B}(1,2,3)$

$$
\begin{aligned}
\therefore \quad \mathrm{AB} & =\left|\sqrt{(1+2)^{2}+(2-4)^{2}+(3+5)^{2}}\right| \\
& =|\sqrt{9+4+64}|=\sqrt{77}
\end{aligned}
$$

Therefore, direction cosines of the line joining two points are:
$\frac{1+2}{\sqrt{77}}, \frac{2-4}{\sqrt{77}}, \frac{3+5}{\sqrt{77}}$
or, $\frac{3}{\sqrt{77}}, \frac{-2}{\sqrt{77}}, \frac{8}{\sqrt{77}}$

Solutions for Practice Questions (Topic-2)

Very Short Answer Type Questions

$$
\begin{equation*}
\text { 5. } \quad \vec{r}=\hat{i}+2 \hat{j}+3 \hat{k}+\lambda(-2 \hat{i}-3 \hat{j}+4 \hat{k}) \tag{1}
\end{equation*}
$$

[CBSE Marking Scheme 2016]
6. Using formula

$$
\begin{array}{rlrl}
& & l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2} & =0 \\
\text { or } & -8 p+6 p-28 & =0 \\
\text { or } & -2 p & =28
\end{array}
$$

$\therefore \quad p=-14$

Short Answer Type Questions-I

7. Equation of line

$$
\begin{align*}
\frac{x-x_{1}}{x_{2}-x_{1}} & =\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}} \\
\frac{x-1}{2-1} & =\frac{y-1}{3-1}=\frac{z-2}{-1-2} \\
\frac{x-1}{1} & =\frac{y-1}{2}=\frac{z-2}{-3} \tag{1}
\end{align*}
$$

步

Short Answer Type Questions-II

3. Lines are perpendicular

$$
\therefore-3(3 \lambda)+2 \lambda(2)+2(-5)=0 \Rightarrow \lambda=-2 \quad 1
$$

$$
\left|\begin{array}{lll}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{3}
\end{array}\right|=\left|\begin{array}{lcc}
1-1 & 1-2 & 6-3 \\
-3 & 2(-2) & 2 \\
3(-2) & 2 & -5
\end{array}\right| \quad \mathbf{1} 1 / 2
$$

$$
=-63 \neq 0
$$

Lines are not intersecting
[CBSE Marking Scheme, 2019] (Modified)

Detailed Solution :

The equations of the given lines are :

$$
\frac{x-1}{-3}=\frac{y-2}{2 \lambda}=\frac{z-3}{2}
$$

and

$$
\frac{x-1}{3 \lambda}=\frac{y-1}{2}=\frac{z-6}{-5}
$$

On comparing these lines with $\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}$
$=\frac{z-z_{1}}{c_{1}}$ and $\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$, we get
$a_{1}=-3, b_{1}=2 \lambda, c_{1}=2$ and $a_{2}=3 \lambda, b_{2}=2, c_{2}=-5$
Since, lines are perpendicular,
So, $(-3)(3 \lambda)+(2 \lambda)(2)+(2)(-5)=0$
$\Rightarrow-9 \lambda+4 \lambda-10=0$
$\Rightarrow \quad-5 \lambda-10=0$
$\Rightarrow \quad-5 \lambda=10$
$\Rightarrow \quad \lambda=-2$
Hence, for $\lambda=-2$ the given lines are perpendicular.

Now, given lines can be written as after substituting value of $\lambda=-2$

$$
\begin{array}{rlrl}
\frac{x-1}{-3} & =\frac{y-2}{-4}=\frac{z-3}{2} \\
\text { and } & \frac{x-1}{-6} & =\frac{y-1}{2}=\frac{z-6}{-5}
\end{array}
$$

The coordinate of any point on first line are given by

$$
\begin{equation*}
\frac{x-1}{-3}=\frac{y-2}{-4}=\frac{z-3}{2}=r \tag{say}
\end{equation*}
$$

or $\quad x=-3 r+1, y=-4 r+2, z=2 r+3$
So, the coordinates of a general point on first line are $(-3 r+1,-4 r+2,2 r+3)$.
The coordinates of any point on second line are given by

$$
\frac{x-1}{-6}=\frac{y-1}{2}=\frac{z-6}{-5}=s
$$

or

$$
x=-6 s+1, y=2 s+1, z=-5 s+6
$$

So, the coordinates of a general point on second line are $(-6 s+1,2 s+1,-5 s+6)$
If the lines intersect, then they have a common point. So, for some value of λ and μ, we must have
$-3 r+1=-6 s+1,-4 r+2=2 s+1,2 r+3=-5 s+6$ or

$$
r=2 s,-4 r-2 s=-1,2 r+5 s=3
$$

Solving first two of these two equations, we get $r=\frac{1}{5}$ and $s=\frac{1}{10}$. These values of r and s do not satisfy the third equation.
Hence, the given lines do not intersect.

Commonly Made Error

Some students compute the shortest distance to show that the lines are intersecting.

Answering Tips

- Learn the concepts of parallel, perpendicular, skew and intersecting lines.

9. Equations of lines can be written as :

$$
\begin{aligned}
\vec{r} & =(\hat{i}+2 \hat{j}+\hat{k})+t(\hat{i}-\hat{j}+\hat{k}) \\
\vec{r} & =(2 \hat{i}-\hat{j}-\hat{k})+s(2 \hat{i}+\hat{j}+2 \hat{k}) \\
\overrightarrow{a_{1}} & =\hat{i}+2 \hat{j}+\hat{k} \\
\overrightarrow{b_{1}} & =\hat{i}-\hat{j}+\hat{k} \\
\vec{a}_{2} & =2 \hat{i}-\hat{j}-\hat{k}
\end{aligned}
$$

Let,

$$
\overrightarrow{b_{2}}=2 \hat{i}+\hat{j}+2 \hat{k}
$$

Then,

$$
\begin{aligned}
& \overrightarrow{a_{2}}-\vec{a}_{1}=\hat{i}-3 \hat{j}-2 \hat{k}, \\
& \overrightarrow{b_{1}} \times \overrightarrow{b_{2}}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -1 & 1 \\
2 & 1 & 2
\end{array}\right|
\end{aligned}
$$

$$
=-3 \hat{i}+3 \hat{k}
$$

\therefore Shortest distance

$$
\begin{aligned}
& =\left|\frac{\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\vec{a}_{2}-\overrightarrow{a_{1}}\right)}{\left|\overrightarrow{b_{1}} \times \vec{b}_{2}\right|}\right| \\
& =\left|\frac{-3-6}{\sqrt{9+9}}\right| \\
& =\frac{3}{\sqrt{2}} \text { or } \frac{3 \sqrt{2}}{2} \text { units }
\end{aligned}
$$

[CBSE Marking Scheme 2016] (Modified)

Long Answer Type Questions

3. Any point on the given line is
$(2 \lambda-1,-2 \lambda+3,-\lambda) i$ if this point is Q then $1 / 2$ $\overrightarrow{P Q}=(2 \lambda-2) \hat{i}+(-2 \lambda+1) \hat{j}+(-\lambda+3) \hat{k} \quad 1 / 2$

Since $\overrightarrow{P Q}$ is perpendicular to the line

$$
\therefore 2(2 \lambda-2)-2(-2 \lambda+1)-1(-\lambda+3)=0
$$

or

$$
\begin{equation*}
\lambda=1 \tag{1}
\end{equation*}
$$

\therefore Foot of perpendicular is $Q(1,1,-1)$
Let $P^{\prime}(x ., y, z)$ be the image of P in the line, then

$$
\begin{align*}
& \frac{x+1}{2}=1 \\
& \frac{y+2}{2}=1 \tag{1}
\end{align*}
$$

$$
\frac{z-3}{2}=-1
$$

or $\quad x=1, y=0, z=1 \quad 1$
or Image P is $(1,0,1)$.
$1 / 2$
[CBSE Marking Scheme 2016] (Modified)

Recognize three dimensional shapes and their environment.

- Create composite shapes.
- Describe attributes of original and composite shapes.
- Compare and contrast original and created composite shapes.
- Can you easily recognize 3D shapes and their environment?
- Will you be able to create composite shapes?
- Will you be able to handle the complex situations of 3D geometry?

UNIT-IV

(A) OBJECTIVE TYPE QUESTIONS:

I. Multiple Choice Questions

Q. 1. A point from a vector starts is called \qquad and where it ends is called its \qquad .
(A) terminal point, end point
(B) initial point, terminal point
(C) origin, end point
(D) initial point, end point
Q. 2. The vector equation of line through the points $(1,-1,6)$ and $(4,3,-1)$ is \qquad
(A) $\vec{r}=(3 \hat{i}+4 \hat{j}-7 \hat{k})+\lambda(-2 \hat{i}-5 \hat{j}+13 \hat{k})$
(B) $\vec{r}=(3 \hat{i}+4 \hat{j}-7 \hat{k})+\lambda(\hat{i}-\hat{j}+6 \hat{k})$
(C) $\vec{r}=(\hat{i}-\hat{j}+6 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}-7 \hat{k})$
(D) $\vec{r}=(3 \hat{i}+4 \hat{j}-7 \hat{k})+\lambda(4 \hat{i}+3 \hat{j}-\hat{k})$
Q. 3. The equation of a line, which is parallel to $2 \hat{i}+\hat{j}+3 \hat{k}$ and which passes through the point $(5,-2,4)$ is \qquad .
(A) $\frac{x+5}{2}=\frac{y-2}{1}=\frac{z-4}{3}$
(B) $\frac{x-5}{2}=\frac{y-2}{1}=\frac{z+4}{3}$
(C) $\frac{x+5}{2}=\frac{y-2}{1}=\frac{z+4}{3}$
(D) $\frac{x-5}{2}=\frac{y+2}{1}=\frac{z-4}{3}$
Q. 4. The angle between the unit vectors \hat{a} and \hat{b} so that $\sqrt{3} \hat{a}-\hat{b}$ is also anit vector is \qquad
(A) 90°
(B) 60°
(C) 30°
(D) 45°
Q. 5. The area of a triangle formed by vertices O, A and B, where $\overrightarrow{O A}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\overrightarrow{O B}=-3 \hat{i}-2 \hat{j}+\hat{k}$ is
(A) $3 \sqrt{5}$ sq. units
(B) $5 \sqrt{5}$ sq. units
(C) $6 \sqrt{5}$ sq. units
(D) 4 sq. units
Q. 6. The position vectors of two points A and B are $\overrightarrow{O A}=2 \hat{i}-\hat{j}-\hat{k}$ and $\overrightarrow{O B}=2 \hat{i}-\hat{j}+2 \hat{k}$, respectively, The position vector of a point P which divides the line segment joining A and B in the ratio $2: 1$ is \qquad
(A) $2 \hat{i}-\hat{j}+\hat{k}$
(B) $2 \hat{i}+\hat{j}+\hat{k}$
(C) $2 \hat{i}-\hat{j}-\hat{k}$
(D) $-2 \hat{i}+\hat{j}+\hat{k}$

II. Case-Based MCQs

Attempt any 4 sub-parts from each questions. Each question carries 1 mark.
Read the following text and answer the following questions on the basis of the same.
A building of a multinational company is to be constructed in the form of a triangular pyramid, ABCD as shown in the figure.
A Shanghai temple is in the form of a triangular pyramid with floor $A B D$ and vertex C.

Let its angular points are $A(3,0,1), B(-1,4,1), C(5,2,3)$ and $D(0,-5,4)$ and G be the point of intersection of the medians of $\triangle \mathrm{BCD}$.
Based on the above data, answer the following.
Q. 7. The coordinates of points G are
(A) $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
(B) $\left(0, \frac{1}{2}, \frac{1}{3}\right)$
(C) $\left(\frac{4}{3}, \frac{1}{3}, \frac{8}{3}\right)$
(D) $\left(\frac{4}{3}, \frac{8}{3}, \frac{1}{3}\right)$
Q. 8. The length of vector $\overrightarrow{A G}$ is
(A) $\sqrt{17}$ units
(B) $\frac{\sqrt{51}}{3}$ units
(C) $\frac{3}{\sqrt{6}}$ units
(D) $\frac{\sqrt{59}}{4}$ units
Q. 9. Area of triangle $A B C$ (in sq. units) is
(A) 24
(B) $8 \sqrt{6}$
(C) $4 \sqrt{6}$
(D) $5 \sqrt{6}$
Q. 10. The sum of length of $\overrightarrow{A B}$ and $\overrightarrow{A C}$ is
(A) 4 units
(B) 9.1 units
(C) 8.7 units
(D) 6 units
Q. 11. The length of the perpendicular from the vertex D on the opposite face is
(A) $\frac{14}{\sqrt{6}}$ units
(B) $\frac{2}{\sqrt{6}}$ units
(C) $\frac{3}{\sqrt{6}}$ units
(D) $8 \sqrt{6}$ units
(B) SUBJECTIVE TYPE QUESTIONS:

III. Very Short Answer Type Questions

Q. 12. Write a unit vector in the direction of the sum of vectors $\vec{a}=2 \vec{i}+2 \vec{j}-5 \vec{k}$ and $\vec{b}=2 \vec{i}+\vec{j}-7 \vec{k}$.
Q. 13. Find the equation of line passing through $(1,1,2)$ and $(2,3,-1)$.
Q. 14. Find the direction cosines of the line:

$$
\frac{x-1}{2}=-y=\frac{z+1}{2}
$$

IV. Short Answer Type Questions-I

Q. 15. If the sum of two unit vectors is a unit vector, prove that the magnitude of their difference is $\sqrt{3}$.
Q. 16. If \hat{a}, \hat{b} and \hat{c} are mutually perpendicular unit vectors, then find value of $|2 \hat{a}+\hat{b}+\hat{c}|$.
Q. 17. Find the vector and vector of magnitude $3 \sqrt{2}$ units which makes an angle of $\frac{\pi}{4}$ and $\frac{\pi}{2}$ with Y and Z-axes, respectively.
V. Short Answer Type Questions-II
Q. 18. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to \vec{a}, \vec{b} and \vec{c}. Also, find the angle which $\vec{a}+\vec{b}+\vec{c}$ makes with \vec{a} or \vec{b} or \vec{c}.
Q. 19. Show that the points A, B and C with position vectors $\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $c=\hat{i}-3 \hat{j}-5 \hat{k}$ from the vertices of a right- angled triangle.

VI. Long Answer Type Questions

$[1 \times 5=5]$
Q. 20. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. Find the vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d}=15$.

[^0]: (3) R\&U [Outside Delhi Set I, III, III, Comptt. 2016]

