BOUNCE BACK 2.0

JEE MAINS & ADVANCED ONE SHOT

GHEMICAL BONDING

SAKSHI VORA

Join with us in Telegram

TELEGRAM CHANNEL

• t.me/unacademyatoms

COMPLETE NOTES AND LECTURES

• <u>tinyurl.com/unacademyatoms</u>

☐ India's BEST Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the **BEST**

Step closer to achieving your dreams by cracking your State CET

Pre-book today at ₹49 and get an assured 50% discount on launch price!

Launching on November 1, 2022

Register Now

Use Code

Counselling Festival

25 Oct - 31 Oct

Interact with your Favourite Educator

Special Surprise!

For the learners who attend the session

Nurture Batch

for IIT JEE Main and Advanced 2024

Code: SAKSHI

Batch highlights:

- Curated by India's Top Educators
- Coverage of Class 11 JEE syllabus
- Enhance conceptual understanding of JEE Main & JEE Advanced subjects
- Systematically designed courses
- Strengthen JEE problem-solving ability

Prashant Jain
Mathematics Maestro

Nishant VoraMathematics Maestro

Ajit Lulla
Physics Maestro

Abhilash Sharma Physics Maestro

Sakshi Vora Chemistry Maestro

Megha Khandelwal Chemistry Maestro

Evolve Batch

for Class 12th JEE Main and Advanced 2023

Code: SAKSHI

USPs of the Batch

- Top Educators from Unacademy Atoms
- Complete preparation for class 12th syllabus of JEE Main & Advanced
- Quick revision, tips & tricks

Nishant Vora Mathematic Maestro

Ajit Lulla Physics Maestro

Sakshi Ganotra
Organic & Inorganic
Chemistry Maestro

Megha Khandelwal Chemistry Maestros

Prashant Jain Mathematics Maestro

Abhilash Sharma Physics Maestro

Achiever Batch 2.0//

for IIT JEE Main and Advanced 2023 Droppers

Code: SAKSHI

Batch highlights:

- Learn from India's Top Educators
- Coverage of Class 11 & 12 syllabus of JEE
- Deep dive at a conceptual level for JEE Main and JEE Advanced
- Systematic course flow of subjects and related topics
- Strengthening the problem-solving ability of JEE level problems

Nishant Vora Mathematics Maestros

Prashant Jain Mathematics Maestros

Ajit Lulla Physics Maestros

Abhilash Sharma Physics Maestros

Sakshi Vora Chemistry Maestros

Megha Khandelwal Chemistry Maestros

For more details, contact 8585858585

IIT JEE subscription

Among the following species

 N_2 , N_2^+ , N_2^- , N_2^{2-} , O_2 , O_2^+ , O_2^- , O_2^{2-}

the number of species showing diamagnetism is

Match List I with List II:

List-I	List-II
	(hybridization; shape)
$A.(XeO_3)$	I. sp ³ d; linear
B. XeF ₂	II. sp ³ ; pyramidal
C. XeOF ₄	III. sp ³ d ³ ; distorted octahedral
D. XeF ₆	IV. sp ³ d ² ;square pyramidal

Choose the correct answer from the options given below:

B. A-II, B-IV, C-III, D-I

A-IV, B-II, C-I, D-III

ju main PYQ,

The total number of acidic oxides from the following list is: NO, N₂O,

3

 B_2O_3 , N_2O_5 , CO, SO_3 , P_4O_{10} NO newhol > EZE TI HRT NO NO - acidic **C.** 5 acidic D. 6 -s acidic

The sum of number of lone pairs of electrons present on the central atoms of XeO₂. XeOF₄ and XeF₆ is

Match List - I with List - II.

List - I

List – II

(Compound)

(Shape)

$$(A)BrF_{s}$$

(B)
$$[\operatorname{CrF}_6]^{3-}$$

$$(C) O_3$$

(D)
$$PCl_5$$

Choose the **correct** answer from the options given below:

A.
$$(A) - (I), (B) - (II), (C) - (III), (D) - (IV)$$

$$(A) - (III), (B) - (IV), (C) - (II), (D) - (I)$$

$$6 = 5$$

$$P = 1$$

$$6$$

$$8p^{3}d^{2}$$

Arrange the following in increasing order of their covalent character.

JEE 2022

- (A) GaF_2
- (B) Cacl₂
- (C) CaBr₂
- (D) Cal₂

Choose the correct from the options given below.

- A. B < A < C < D
- # (A < B < C < D
 - C. A < B < D < C
 - D. A < C < B < D

Given below are two statements.

Statement I : O_2 , Cu^{2+} Fe³⁺ are weakly attracted by magnetic field and are magnetized in the same direction as magnetic field.

Statement II: NaCl and H₂O are weakly magnetized in opposite direction to magnetic field. In the light of the above statements, choose the most appropriate answer form the options given below:

- A. Both statement I and statement II are correct
- B. Both statement I and Statement II are incorrect
- C. Statement I is correct but Statement II is incorrect
- D. Statement I is incorrect but statement II is correct.

According to MO theory, number of species/ions from the following having

Match List-I with List-II

List-I

List-II

- (I) Dipole moment
- (B) $\mu = Q \times r$
- (II) Bonding molecular

Ju main PYB

orbital

$$(C) \frac{N_b - N_a}{2}$$

(III) Anti-bonding

molecualr orbital

(D)
$$\Psi_{MO} = \Psi_A + \Psi_B$$
 (IV) Bond order

- (A)-(III), (B)-(IV), (C)-(I), (D)-(II)
- (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
- (A)-(III), (B)-(IV), (C)-(II), (D)-(I)

The number of paramagnetic species among the following is_.

Given below are two statements: One is labelled as

Assertion A and the other is labelled as Reason R

Assertion A zero orbital overlap is an out of phase overlap.

Reason It results due to different orientation / direction of approach of orbitals.

In the light of the above statements. Choose the correct answer from the options given below.

Both A and R are true and R is the correct explanation of A

- B. Both A and R are true but R is NOT the correct explanation of A
- **C.** A is the true but R is false
- D. A is false but R is true

Number of lone pairs of electrons in the central atom of (SCI_2, O_3, CIF_3) and

SF₆, respectively, are:

Ju main PYQ

0, 1, 2 and 2

(2, 1, 2) and 0

1, 2, 2 and 0

(2) 1, (2) and (9)

Consider , PF_5 Br F_5 , PCl_3 , SF_6 , $[ICI_4]$, CIF_3 and IF_5 .

Amongst the above molecule(s)/ion(s), the number of molecule(s)/ion(s)

having sp³d² hybridisation is_.

$$\beta = 5$$

$$0 = 5$$

$$0 = 5$$

The correct order of bond orders of C^{2-}_2 , N^{2-}_2 and O^{2-}_2 is, respectively.

- A. $C^{2-}_{2} < N^{2-}_{2} < O^{2-}_{2}$
- B. $O^{2-}_{2} < N^{2-}_{2} < C^{2-}_{2}$
- C. $C^{2-}_{2} < O^{2-}_{2} < N^{2-}_{2}$
- D. $N^{2-}_{2} < C^{2-}_{2} < O^{2-}_{2}$

Bonding in which of the following diatomic molecule(s) become(s)

stronger, on the basis of MO Theory, by removal of an electron?

Amongst BeF_2 , BF_3 , H_2O , NH_3 , CCI_4 and HCl, the number of molecules with non-zero net dipole moment is $-\sqrt{TEE}$ PVO.

Consider the ions/molecule O⁺₂, O₂, O₂⁻, O²⁻₂

For increasing bond order the correct option is

B.
$$O_2^- < O_2^{2-} < O_2^+ < O_2^+$$

D.
$$O_2^- < O_2^+ < O_2^{2-} < O_2$$

The oxide which contains an odd electron at the nitrogen atom is

le mair 2022

D. N_2O_5

D.

Based upon VSEPR theory, match the shape (geometry) of the molecules in List-I with the molecules in List-II and select the most appropriate option

Lis	st-I	List-II
(Shape)		(Molecules)
(A) T-shaped	(I) XeF ₄
(B)) Trigonal planar	(II) SF ₄
(C)) Square planar	(III) CIF ₃
(D) Sec-saw		(IV) BF ₃
A.	A. $(A) - I, (B) - (II), (C) - (III), (D) - (IV)$	
В.	(A) - (III), (B) - (IV), (C) - (I), (D) - (II)	

(A) - (III), (B) - (IV), (C) - (II), (D) - (I)

(A) - (IV), (B) - (III), (C) - (I), (D) - (II)

Identity the incorrect statement for PCl₅ from the following.

- A. In this molecule, orbitals of phosphorus are assumed to undergo sp³ d hybridization
- **B.** The geometry of PCl₅ is trigonal bipyramidal.
- C. PCl₅ has two axial bonds stronger than three equatorial bonds.
- D. The three equatorial bonds of PCl₅ lie in a plane.

The correct order of increasing intermolecular hydrogen bond strength is

863d

In the structure of SF_4 , the lone pair of electrons on S is in. 26

- (A) equatorial position and there are two lone pairbond pair repulsions at 90°
- (B) equatorial position and there are three lone pair-bond pair repulsions at 90°
- (C) axial position and there are three lone pair bond pair repulsion at 90°.
- (D) axial position and there are two lone pair bond pair repulsion at 90°.

Arrange the following in the decreasing order of their covalent character:

Question: Choose the **most appropriate** answer from the options given below :

(B) (B)
$$>$$
 (A) $>$ (C) $>$ (D)

$$(C)$$
 $(A) > (B) > (C) > (D)$

(D) (A)
$$>$$
 (B) $>$ (D) $>$ (C)

28

Consider the species CH₄, NH₄⁺ and BH₄⁻. Choose the correct option with respect to the there species:

- (A) They are isoelectronic and only two have tetrahedral structures
- (B) they are isoelectronic and all have tetrahedral structures
- (C) Only two are isoelectronic and all have tetrahedral structures
- (D) Only two are isoelectronic and only two have tetrahedral structures

6+4 7+4-1 10 10

Number of lone pair (s) of electrons on central atom and the shape of BrF₃ molecule respectively, are:

- (A) 0, triangular planar.
- (B) 1, pyramidal.
- (C) bent T-shape.
- (D) 1, bent T-shape

Section 1 Bond Nat a A required A-A released

why? sharucoralent Na - 152252635 Na - e + Na octet complete

Covalent Bond

* shaving of Es == 2e
* April covalent bond will be formed = no of unpaired = no funpaired = no funpaired = 2 and state excited state

Structure of molecules > central atom - Bide atoms central - lex in eneg, bigger in tize (covalency) H, F, O --- com be only side atom 0= 1228238py

 $\bar{O} = 18^2 a s^2 a p^5$ NH_8 , H_9O , SO_4^{2-} , NH_4 , PU_5 , SF_4 , NO_5 , etc...

dewis Octet Rule every atom --- outurnost shull -- (8ehypervalent compounds 10e > 8e-

1e unpaved - odd e socies * NO2 odd e species * Xe - invit gas - Octet complete reoz reof refo - ??

Coordinate Bond + lw12 $O_2 \Rightarrow expense$ 8e -

Formal Charge ह्य नी मरा 0. NO NO CO 802 laughing gas dewis dot st $N \equiv N \longrightarrow C$ 6e_ 4 F C = 1 · hydronium ion f c = +1**(H)** F(=0

Colateral/Sideroays I to the internucliar axis

ado. dry-dry along x-axis dry-dry-along garus 9 S-bond TC-bond dry & Px overlap along x anu no overlap

dry, (Px) overlop along y-ans Tr-bond along 3 axus 8-bond

* Bond Strength. coaxial ovulat >>>> colateral ovulats |3-|s > 2s-2s > 3s-3s 2s-2s < 2s-2p < 2p-2p (along the axis) The strongest Bond among the following.

076 Bond Strength 61 a < lo a = locoun't be compared Bond strongth of the following umam 2019 Ntg = Ptg = Astg = Coty Pt > Nt > Ast > 8th

Participation of d-orbital en hybridization PH5 X 35° 363 11 38 3d,

ethene C2H4 llanou 70 1 * ethyne 1-c=c-H sp 180° linea

Trangular bi kyramidal

Sp3d²

$$S+px+py+p_3+dx^2y^2+dz^2$$

$$9/6S=\frac{1}{6}\times100$$

$$9/6P=\frac{3}{6}\times100$$
Square bipyramidal $6d=\frac{2}{6}\times100$

Octobedral 70°, 180° faces

VSEPR Theory

Valence shell electron pair supulsion theory

- lp-lp > lp-lp > lp-lp
- multiple bond multiple bond multi-single > single-lingle

tetrahedre- electronic geo

CHA Shape

tetrahedral

$$\frac{S=2}{JP=1}$$

$$\frac{3}{3}$$

$$\frac{1}{86^{2}}$$
Bent/V
$$\frac{3}{1}$$

$$\frac{3}{86^{2}}$$

$$\frac{\sigma=3}{4}$$

$$\frac{1}{4}$$

$$\frac{1}{107}$$
Pyramudal
$$\frac{4}{8p^3}$$

See-saw

oxbital with more

% S

charactri

IP & muclus

$$5 = 3$$
 $1 = 2$
 $5 = 86^3 d$

Bent

T-shaped

180°

$$5 = 2$$
 $5 = 3$
 $5 = 3$

$$5 = 6$$
 $4p = 0$
 6
 $86^3 d^2$

Square planar

Pentagonal planav

Sq bipyramidal
$$\frac{6}{5} = 5$$

$$\frac{5}{6} = 5$$

$$\frac{5}{6} = 5$$

$$\begin{array}{c}
5 = 7 \\
4P = 0 \\
\hline
7 \longrightarrow 8\beta^3 d^3
\end{array}$$

Pentagonal & fyramida

fu ado Sp3d3 मरखर care J = 6 T 5 = 6 G = 6 lp = 1 1p=1 mactive Ip. active & p Natkhat (ase-1 Xefo and Ifo footsipale hylo

Natkhat - Case 2. + imactive 1.p 1 p dount participat un Uf 1P - Rur s-orbital b3d3 Perfect octahedral

we e nep atom

wants to go to that orbital which has lu 1.5

non-polar bond 4=0 H-a uto Polar bond Polar </++/> 4-Be-4 B --- B bonde are polar linear, 180°, U=0 mollule is non-polar CC14— Polar/non-polar

NH3

NH3

NH3

NH3

NH3

A is more polar than B

b) A is less

c) A is =

d) nat comparable.

Repeat ju Que CHUZ CHECL 2018 2019 Side atom on size 1 2020 supulsion of 2021 2022 ルーロ Coso W 412+ 42+ 24,4 COSO 4 CHAI

Hylo in \$/e/g state - gasious-1 8p3d solid --- sp3d PU5 - Ganous - 863d PUS-polid - [PUy]+[PU6] 86392

Drago's rule/compounds no hybridization. 1111 +8p3---107° 90

Molecular Oxbrital Theory VBT-fail 1 Ozygen (g) 02 > para 0=0 all és ou Pavud dimag 1 bond a bond 3 bond

3 VBT - bond - colown?

atom—e—→ atomic orbitals moluule—e—→ molecular orbital (atom)+(atom) - moliule Mo. of AO = no of mo formed Mund's reule, Aufbau, Paulis - reules - e- in M.O

$$\frac{4}{4} + \frac{4}{8}$$
 $\frac{4}{4} + \frac{4}{8} + \frac{4}{4} + \frac{4}{8}$
 $\frac{4}{4} + \frac{4}{8} + \frac{4}{8} + \frac{4}{8}$
 $\frac{4}{8} + \frac{4}{8} + \frac{4}{8} + \frac{4}{8}$
 $\frac{4}{$

$$\frac{\text{Case 2}}{+}$$

$$\frac{+}{2s}$$

$$\frac{+}{2s}$$

$$\frac{+}{5}$$

$$\frac{-}{5}$$

$$\frac{*}{2s}$$

$$\frac{\cos^3}{2px} \qquad \frac{++++-}{2px} \qquad \frac{+}{2px} \qquad \frac{-x+}{2px} \qquad$$

Gerage & Ungurade no cos. writ phan

COS Wrt-phan

Nodal plane nodaj plani = 0 modal plane = 1 nodal plane = 2 nodai planes = 3

MOD Moleulan Orbital Diagram th-atom H-atom Bond order = I no ge in - no. gein

RMA

ADMO

He He
$$1(9-9)=0$$

 $\frac{1}{2}(2-2)=0$ $+e_2-e_3$ the doesn't exist

I internudian axis. 11 2px 7 2py 112px 12py 2px 2py 2pz रिष्ट रिष्ट रिष्ट 5293 23 28 023 15 ls'

कम वुक् B----- 2522 111 $C \longrightarrow 2s^2ab^2$ sup T gap 6/w 25 & 2p T S-P mixing 11 [7] N-→ 232p3 74/1/7 0- 252p4 t---- 53,322 Ne -> 28,8Pe huz gop

SVshoreteut -) alles are poired even no. of e- -- diamag odd no of e--- paramag - unpavude-& Paramap

LUMO HOMO lowest unoccupied mo highest occupied mo LUMO 3 LUMO + HOMO + HOMO G 2P3

$$\begin{array}{c} CN \\ CN \\ NO \\ NO \\ \end{array}$$

Fajards Rule

- 1 bond 100% conc 100% covalent
- 2 Covalent % conic character
- 1 ionic % Covalent character
- A Naci 100/ionic sphurical e-density
 Na-e-+ Na⁺
 U+e--s U-

(3) Head

covalent bond

st

H

of conic character in covalent bond

H

H

In / covalent p

H

F

Nacl ionic compound - 1 cou charactu KU Nacl Polovuzation Nat Nat Polarize

Covalent character & Polarization X ionic character & lolovization Wa, lbQ4 more covalent charactr

M-Bonding.

11-4 (H)-cr x +1 Bonding

St of hydrogen bond.

H-f...H-F

Ho. . 40

NH3... NH3

H-F: H-F Ja max H-bond H20...H-F Jo NH3....H-F Jc

2 the first of a max to -- to o Nts -- Nts c arbice

Join with us in Telegram

TELEGRAM CHANNEL

• t.me/unacademyatoms

COMPLETE NOTES AND LECTURES

• <u>tinyurl.com/unacademyatoms</u>

☐ India's BEST Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the **BEST**

Step closer to achieving your dreams by cracking your State CET

Pre-book today at ₹49 and get an assured 50% discount on launch price!

Launching on November 1, 2022

Register Now

Use Code

Counselling Festival

25 Oct - 31 Oct

Interact with your Favourite Educator

Special Surprise!

For the learners who attend the session

Nurture Batch

for IIT JEE Main and Advanced 2024

Code: SAKSHI

Batch highlights:

- Curated by India's Top Educators
- Coverage of Class 11 JEE syllabus
- Enhance conceptual understanding of JEE Main & JEE Advanced subjects
- Systematically designed courses
- Strengthen JEE problem-solving ability

Prashant Jain
Mathematics Maestro

Nishant VoraMathematics Maestro

Ajit Lulla
Physics Maestro

Abhilash Sharma Physics Maestro

Sakshi Vora Chemistry Maestro

Megha Khandelwal Chemistry Maestro

Evolve Batch

for Class 12th JEE Main and Advanced 2023

Code: SAKSHI

USPs of the Batch

- Top Educators from Unacademy Atoms
- Complete preparation for class 12th syllabus of JEE Main & Advanced
- Quick revision, tips & tricks

Nishant VoraMathematic Maestro

Ajit LullaPhysics Maestro

Sakshi Ganotra
Organic & Inorganic
Chemistry Maestro

Megha Khandelwal Chemistry Maestros

Prashant Jain Mathematics Maestro

Abhilash Sharma Physics Maestro

Achiever Batch 2.0

for IIT JEE Main and Advanced 2023 Droppers

Code: SAKSHI

Batch highlights:

- Learn from India's Top Educators
- Coverage of Class 11 & 12 syllabus of JEE
- · Deep dive at a conceptual level for JEE Main and JEE Advanced
- Systematic course flow of subjects and related topics
- Strengthening the problem-solving ability of JEE level problems

Nishant Vora Mathematics Maestros

Prashant Jain Mathematics Maestros

Ajit Lulla Physics Maestros

Abhilash Sharma Physics Maestros

Sakshi Vora Chemistry Maestros

Megha Khandelwal Chemistry Maestros

For more details, contact 8585858585

