

## Join with us in Telegram

## TELEGRAM CHANNEL

- t.me/unacademyatoms

COMPLETE NOTES AND LECTURES

- tinyurl.com/unacademyatoms


## Unacademy Subscription



## If you want to be the BEST "Learn" from the BEST



## Step closer to achieving your dreams by cracking your State CET

Pre-book today at ₹49 and get an assured 50\% discount on launch price!

Launching on November 1, 2022
Register Now

Use Code


## Counselling Festival

 25 Oct - 31 Oct
## Interact with your Favourite Educator

## Special Surprise!

For the learners who attend the session

## Nurture Batch

## for IIT JEE Main and Advanced 2024

## Code: SAKSHI

## Batch highlights:

- Curated by India's Top Educators
- Coverage of Class 11 JEE syllabus
- Enhance conceptual understanding of JEE Main \& JEE Advanced subjects
- Systematically designed courses
- Strengthen JEE problem-solving ability

Prashant Jain
Mathematics Maestro


Ajit Lulla Physics Maestro


Sakshi Vora
Chemistry Maestro

Nishant Vora
Mathematics Maestro


Abhilash Sharma
Physics Maestro


Megha Khandelwal Chemistry Maestro

## Evolve Batch

Nishant Vora
Mathematic Maestro


Sakshi Ganotra
Organic \& Inorganic Chemistry Maestro


Prashant Jain Matherratics Maestro

Ajit Lulla Physics Maestro


Megha Khandelwal Chemistry Moestros


Abhilash Sharma
Physics Maestro

## Achiever Batch 2.0 //

## for IIT JEE Main and Advanced 2023 Droppers

## Code: SAKSHI

## Batch highlights:

- Learn from India's Top Educators
- Coverage of Class 11 \& 12 syllabus of JEE
- Deep dive at a conceptual level for JEE Main and JEE Advanced
- Systematic course flow of subjects and related topics
- Strengthening the problem-solving ability of JEE level problems

Prashant Jain Mathematics Maestros


Abhilash Sharma
Physics Maestros


Sakshi Vorc
Chemistry Maestros


Megha Khandelwal Chemistry Maestros



## Among the following species

$$
\mathrm{N}_{2}, \mathrm{~N}_{2}^{+}, \mathrm{N}_{2}^{-}, \mathrm{N}_{2}{ }^{2-}, \mathrm{O}_{2}, \mathrm{O}_{2}{ }^{+}, \mathrm{O}_{2}^{-}, \mathrm{O}_{2}{ }^{2-}
$$

the number of species showing diamagnetism is
2

$\mathrm{O}_{2}^{+} \longrightarrow 15 \longrightarrow p$

$\mathrm{N}_{2}^{-} \longrightarrow 15 \longrightarrow P$

$N_{2}^{2-} \longrightarrow 16 \longrightarrow p$

$$
\mathrm{O}_{2} \longrightarrow 16 \longrightarrow p
$$

Match List I with List II :


Choose the correct answer from the options
 given below:

A-III B-I. $\mathrm{C}-\mathrm{IV}$, D-II
B. A-II. B-IV, C-III, D-I

Of A-IV, B-II, C-III, D-I
Xefa


$$
\begin{aligned}
& \sigma=2 \\
& l p=\frac{3}{5}
\end{aligned} 8 \beta^{3} d
$$

The total number of acidic oxides from the following list is : $\mathrm{NO}, \mathrm{N}_{\mathbf{2}} \mathrm{O}$, $\mathrm{B}_{2} \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{CO}, \mathrm{SO}_{3}, \mathrm{P}_{4} \mathrm{O}_{10}$
3 $\mathrm{B}_{2} \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{CO}, \mathrm{SO}_{3}, \mathrm{P}_{4} \mathrm{O}_{10}$
A. 3
B. 4
C. 5

D. 6


The sum of number of lone pairs of electrons present on the central atoms of $\mathrm{XeO}_{3}, \mathrm{XeOF}_{4}$ and $\mathrm{XeF}_{6}$ is_




1


Match List - I with List - II.

## List - I

5
(Compound)

(B) $\left[\mathrm{CrF}_{6}\right]^{3}$
(C) $\mathrm{O}_{3}$
(D) $\mathrm{PCl}_{5}$

List - II
(Shape)
(I) bent
(II) square pyramidal
(III) trigonal bipyramidal (IV) octahedral

Choose the correct answer from the options given below :
A. (A) - (I), (B) - (II), (C) - (III), (D) - (IV)
B. (A) - (IV), (B) - (III), (C) - (II), (D) - (I)
$\rightarrow \underset{\substack{0}}{\operatorname{Br}_{0}}=$

$$
\sigma=5
$$

$$
l p=\frac{1}{6}
$$


C. (A) - (II), (B) - (IV), (C) - (I), (D) - (III)

D (A) - (III), (B) - (IV), (C) - (II), (D) - (I)

Arrange the following in increasing order of their covalent character.
(A) Gd 2
(B) $\mathrm{Gacl}_{2}$
(C) $\mathrm{aBr}_{2}$
(D) $a_{2}$

Choose the correct from the options given below.
A. $\mathrm{B}<\mathrm{A}<\mathrm{C}<\mathrm{D}$

By (A)<(B)<(C) (D)
C. $A<B<D<C$
D. $\mathrm{A}<\mathrm{C}<\mathrm{B}<\mathrm{D}$

Given below are two statements.
Statement I: $\mathrm{O}_{2}, \mathrm{Cu}^{2+} \mathrm{Fe}^{3+}$ are weakly attracted by magnetic field and are magnetized in the same direction as magnetic field.
Statement II: NaCl and $\mathrm{H}_{2} \mathrm{O}$ are weakly magnetized in opposite direction to magnetic field. In the light of the above statements, choose the most appropriate answer form the options given below:
A. Both statement I and statement II are correct
B. Both statement I and Statement II are incorrect
C. Statement I is correct but Statement II is incorrect
D. Statement I is incorrect but statement II is correct.

Amongst the following the number of oxides) which are paramagnetic in
8 nature is $\underbrace{\text { nor }}$


- $\mathrm{N}=0$

$$
\begin{array}{cl}
\text { wat } \mathrm{O}^{2-} & \mathrm{KO}_{2} \\
\therefore O: & \mathrm{KO}_{2}^{-} \\
& \\
& \\
& 16+1=17
\end{array}
$$

$$
N \equiv N \longrightarrow \ddot{O}:
$$




According to MO theory, number of species/ions from the following having identical having bond order is ..
9


$$
O_{2}^{2+} 16-2=14 \sim \beta
$$

$$
6+7+1=14 \quad 7+8-1=14
$$



## List-I

(A) $\Psi_{M O}=\Psi_{A}-\Psi_{B}$
(B)

(II) Bonding molecular
(I) Dipole moment

## List-II

(B) $\underline{\mu=\mathrm{Q} \times r}$ orbital
(III) Anti-bonding

(C) $\frac{\mathrm{N}_{\mathrm{b}}-\mathrm{N}_{\mathrm{a}}}{2}$
molecualr orbital
(D) $\Psi_{\mathrm{MO}}=\Psi_{\mathrm{A}}+\Psi_{\mathrm{B}} \quad$ (IV) Bond order
(A)-(II), (B)-(I), (C)-(IV), (D)-(III)
B. (A)-(III), (B)-(IV), (C)-(I), (D)-(II)
C. (A)-(III), (B)-(I), (C)-(IV), (D)-(II)

D (A)-(III), (B)-(IV), (C)-(II), (D)-(I)

The number of molecules) or ions) from the following havingnon-planar structure is. $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{PCl}_{3}$,

$$
1 / / \mathrm{NC}_{3}^{\prime}, \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{BF}_{3} \mathrm{SFO}_{4}, \mathrm{XeO}_{3}\left(\mathrm{PH}^{+}, \mathrm{SO}, \mathrm{Al}(\mathrm{OH})_{4} \mathrm{l}\right.
$$

$6 \quad \begin{array}{cc}\mathrm{NO}_{3}^{-} & \sigma=3 \\ 0 & \text { lp=3} \\ 1 & \frac{3}{8 \beta^{2}} \\ 0 & \text { Planar }\end{array}$



$$
\rightarrow \operatorname{Si}_{0}^{00} \frac{4}{1}
$$



The number of paramagnetic species among the following is.. $\mathrm{B}_{2}, \mathrm{Li}_{2}, \mathrm{C}_{2}, \mathrm{C}^{-}{ }_{2}, \mathrm{O}^{+}{ }_{2}$ and $\mathrm{He}^{+}{ }_{2}$.


Given below are two statements : One is labelled as
Assertion A and the other is labelled as Reason R
Assertion A: zero orbital overlap is an out of phase overlap.
Reason\% It results due to different orientation / direction of approach of orbitals.

In the light of the above statements. Choose the correct answer from the options given below.

Both $A$ and $R$ are true and $R$ is the correct explanation of $A$
B. Both $A$ and $R$ are true but $R$ is NOT the correct explanation of $A$
C. $A$ is the true but $R$ is false
D. $A$ is false but $R$ is true


Number of lone pairs of electrons in the central atom of $\mathrm{SCI}_{2}, \mathrm{O}_{3}, \mathrm{CIF}_{3}$ and $\mathrm{SF}_{6}$, respectively, are :
A. 0, 1, 2 and 2
F. (2.) 1, (2 )and 0
C. 1, 2, 2 and 0

类 (2) 1, (2) and 2


((2) Consider, $\mathrm{PF}_{5}, \mathrm{BF}_{5}, \mathrm{PCl}_{3}, \underset{\mathrm{SF}_{6}}{\alpha},\left(\mathrm{LCI}_{4}\right], \mathrm{CIF}_{3}$ and $\mathrm{IF}_{5}$
Amongst the above molecule(s)/ion(s), the number of molecule(s)/ion(s) having $s p^{3} d^{2}$ hybridisation is_.

4


$$
\begin{array}{cc}
\dot{d F_{3}} & I F_{5} \\
-\ddot{e}= & -\ddot{I}= \\
\sigma=3 & \sigma=5 \\
\operatorname{lp}=\frac{2}{5} & \operatorname{ep}=\frac{1}{b} \\
\frac{a}{a} &
\end{array}
$$

The correct order of bond orders of $\mathrm{C}^{2-}{ }_{2}, \mathrm{~N}^{2-}{ }_{2}$ and $\mathrm{O}^{2-}{ }_{2}$ is, respectively.
A. $\mathrm{C}^{2-}{ }_{2}<\mathrm{N}^{2-}{ }_{2}<\mathrm{O}^{2-}{ }_{2}$
B. $\mathrm{O}^{2-}{ }_{2}<\mathrm{N}^{2-}{ }_{2}<\mathrm{C}^{2-}{ }_{2}$
C. $\mathrm{C}^{2-}{ }_{2}<\mathrm{O}^{2-}{ }_{2}<\mathrm{N}^{2-}{ }_{2}$
D. $\mathrm{N}^{2-}{ }_{2}<\mathrm{C}^{2-}{ }_{2}<\mathrm{O}^{2-}{ }_{2}$

Bonding in which of the following diatomic molecule(s) become(s) stronger, on the basis of MO Theory, by removal of an electron ?


Amongst $\mathrm{BeF}_{2}, \mathrm{BF}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CCl}_{4}$ and HCl , the number of molecules with non-zero net dipole moment is - TEE PYQ.


Consider the ions/molecule $\mathrm{O}^{+}, \mathrm{O}_{2}, \mathrm{O}_{2}^{-}, \mathrm{O}^{2-}{ }_{2}$ For increasing bond order the correct option is
A. $\mathrm{O}^{2-}{ }_{2}<\mathrm{O}_{2}^{-}<\mathrm{O}_{2}<\mathrm{O}_{2}^{+}$
B. $\mathrm{O}_{2}^{-}<\mathrm{O}^{2-}{ }_{2}<\mathrm{O}_{2}<\mathrm{O}^{+}$
C. $\mathrm{O}_{2}^{-}<\mathrm{O}^{2-}{ }_{2}<\mathrm{O}_{2}<\mathrm{O}_{2}$

D. $\mathrm{O}_{2}^{-}<\mathrm{O}_{2}^{+}<\mathrm{O}^{2-}{ }_{2}<\mathrm{O}_{2}$

The oxide which contains an odd electron at the nitrogen atom is

C. $\mathrm{N}_{2} \mathrm{O}_{3}$

D. $\mathrm{N}_{2} \mathrm{O}_{5}$

Amongst $\mathrm{SF}_{4}, \mathrm{XeF}_{4}, \mathrm{CF}_{4}$ and $\mathrm{H}_{2} \mathrm{O}$, the number of species with two lone pairs of electrons.


Based upon VSEPR theory, match the shape (geometry) of the molecules in List-I with the molecules in List-II and select the most appropriate option

## List-I

(Shape)
(A) T-shaped
(B) Trigonal planar
(C) Squarc planar
(D) Scc-saw

## List-II

(Molecules)
(I) $\mathrm{XeF}_{4}$
(II) $\mathrm{SF}_{4}$
(III) $\mathrm{ClF}_{3}$
(IV) $\mathrm{BF}_{3}$
A. $(\mathrm{A})-\mathrm{I},(\mathrm{B})-(\mathrm{II}),(\mathrm{C})-(\mathrm{III}),(\mathrm{D})-(\mathrm{IV})$
B. $(\mathrm{A})-(\mathrm{III}),(\mathrm{B})-(\mathrm{IV}),(\mathrm{C})-(\mathrm{I}),(\mathrm{D})-(\mathrm{II})$
C. $(\mathrm{A})-(\mathrm{III}),(\mathrm{B})-(\mathrm{IV}),(\mathrm{C})-(\mathrm{II}),(\mathrm{D})-(\mathrm{I})$
D. $(\mathrm{A})-(\mathrm{IV}),(\mathrm{B})-(\mathrm{III}),(\mathrm{C})-(\mathrm{I}),(\mathrm{D})-(\mathrm{II})$


Identity the incorrect statement for $\mathrm{PCl}_{5}$ from the following.
A. In this molecule, orbitals of phosphorus are assumed to undergo $\mathbf{s p}^{3} \mathrm{~d}$ hybridization
B. The geometry of $\mathrm{PCl}_{5}$ is trigonal bipyramidal.
C. $\mathrm{PCl}_{5}$ has two axial bonds stronger than three equatorial bonds.
D. The three equatorial bonds of $\mathrm{PCl}_{5}$ lie in a plane.

The correct order of increasing intermolecular hydrogen bond strength is 2
A. $\mathrm{HCN}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}$
$H-C \equiv N$



In the structure of $\mathrm{SF}_{4}$, the lone pair of electrons on S is in. 26
(A) equatorial position and there are two lone pairbond pair repulsions at $90^{\circ}$
(B) equatorial position and there are three lone pair-bond pair repulsions at $90^{\circ}$
(C) axial position and there are three lone pair bond pair repulsion at $90^{\circ}$.
(D) axial position and there are two lone pair -
bond pair repulsion at $90^{\circ}$.

Arrange the following in the decreasing order of their covalent character :


Question: Choose the most appropriate answer from the options given below :
(A) $(\mathrm{A})>(\mathrm{C})>(\mathrm{B})>(\mathrm{D})$
(B) (B) $>$ (A) $>$ (C) $>$ (D)
(C) $(\mathrm{A})>(\mathrm{B})>(\mathrm{C})>$ (D)
(D) (A) $>$ (B) $>$ (D) $>$ (C)

28
Consider the species $\mathrm{CH}_{4}, \mathrm{NH}_{4}{ }^{+}$and $\mathrm{BH}_{4}{ }^{-}$. Choose the correct option with respect to the there species:
(A) They are isoelectront and only two have tetrahedral structures $\alpha$
(8) they are isoelectronic and all have tetrahedral
structures
(C) Only two are isoelectronic and all have tetrahedral structures
(D) Only two are isoelectronic and only two have tetrahedral structures

$6+4$
10

$7+4-1$
10

$5+4+1$
10

Number of lone pair (s) of electrons on central atom and the shape of $\mathrm{BrF}_{3}$ molecule respectively, are: $\quad 29$
(A) 0, triangular planar.
(B) 1, pyramidal.
(C) 2 bent T-shape.

(D) 1, bent T-shape

| 1. | 11. |
| :---: | :---: |
| 2. | 12. |
| 3. | 14. |
| 4. | 15. |
| 5. | 16. |
| 6. | 17. |
| 7. | 19. |
| 8. | 6 |
| 9. |  |
| 10 |  |

Section 1.
Bond:
$A-A$

$$
\mathrm{Na}^{+} \ldots . \mathrm{Cl}^{-}
$$

$A_{2} \ldots A_{2}$
$\left.\begin{array}{lr}A \frac{3}{3} A & \text { required. } \\ A & A \\ \text { release. }\end{array}\right\}$
why?
F $\qquad$ F: share $]$ covalent


* coordinate bond/dative bond.

$$
A: \longrightarrow B
$$

 deficiency * Reason for Bond formation.



Covalent Bond.

* sharing of $\rightarrow 2 e^{-}$

2/ कितने covalent band will be formed $=$ no. of unpaired e-
how many

$$
\begin{aligned}
& \text { * } c \rightarrow \sum^{*} 2 s^{2} 2 p^{2} \quad 1 \quad 1|1| \\
& \begin{array}{|l|l|l|l}
\hline 1 & 1 & 1 \\
\hline
\end{array} 4 \text { bonds }
\end{aligned}
$$

Structure of molecules.
1.

(1) central atom
2. central $\rightarrow$ lex in ene, bigger in size covalence $\uparrow$
3. H,F, $\mathrm{O}^{-} \longrightarrow$ can be only side atom
4.

$$
\begin{aligned}
& O=1 s^{2} 2 s^{2} 2 p^{4} \\
& \bar{O}=1 s^{2} 2 s^{2} 2 p^{5}
\end{aligned}
$$

5. $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{SO}_{4}^{2-},{ }_{\mathrm{NH}}^{4}, \mathrm{PO}, \mathrm{SF}_{4}, \mathrm{NO}_{2}^{-}$, etc...
\$6 molule has $\theta, 80 \longrightarrow 0^{\text {ot }}$
+ve or -ve $\phi \longrightarrow$ central atom.



Lewis Octet Rule.
every atom $\rightarrow$ outumost shell $\rightarrow$ (se)


Sf 6
$\Rightarrow \mathrm{NO}_{2}$


$1 e^{-}$unpaired $\rightarrow$ Odd e species $\mathrm{ClO}_{3}$


* $X_{e} \longrightarrow$ inert gas - octet complete $\mathrm{XeO}_{3} \mathrm{XeOF}_{4} \mathrm{XeF}_{6} \longrightarrow$ ?


Coordinate Bond.

Q. $\mathrm{N}_{2} \mathrm{O} \rightarrow$ हस नो मरो $\mathrm{N}_{2} \mathrm{O} \mathrm{NO} \mathrm{CO}$ laughing gas

Formal charge

$$
\mathrm{SO}_{2}
$$

Lewis dot st

$$
\begin{aligned}
& N \equiv N: \longrightarrow \ddot{O}: \\
& N \equiv \stackrel{+}{N}-\bar{O}
\end{aligned}
$$

$$
\mathrm{S} \rightarrow \underbrace{3 s^{2} 3 p^{4}}_{6 e^{-}} \quad, \ddot{\mathrm{S}}: 0
$$

Q. $t_{3} 0^{+}$: hydronium ion


Qection 2. Valence fond The org: $\sqrt{ } B T$

1. Bond $\longrightarrow$ valence es

$$
O \longrightarrow 1 s^{2} 6 s^{2} 2 p^{4}
$$

*. overlap.
 covalent Bond

* Directional in Nature
* internuclear axis

(N2) $\longrightarrow$

$$
\begin{aligned}
& N \rightarrow x^{2} 2 s^{2} 2 p^{3} \\
& N \rightarrow \begin{array}{l}
11 \text { |1/1/1 } \\
\hline 2 p x 2 p y 2 p_{z}
\end{array} \\
& N \rightarrow 1 \frac{11_{1} 1}{2 p x 2 p y} 2 p_{3}
\end{aligned}
$$

$\left(\mathrm{O}_{2}\right) \longrightarrow h \cdot w$.


Overlapping के Types.
Coaxial: Head to Head overlap: along the internuclear ax is


Colateral/Sideloays: $\perp$ to the internuclear axis
adv

(3)

$\frac{P-P \text { overlap }}{T \text { bond }}$
(4).
$P_{3}, P_{3}$ overlap along $y$-axis $\longrightarrow$ Bond type=?

ado
(5)

(6).

ado.
(7) $d x y$-dry along $x$-axis $d x y-d x y \rightarrow$ along $\mathcal{Q}$ axis.


$\delta$-bond
(8) $\quad d x y \& p_{x}$ overlap along $x$ axis

$d x y,(P x)$ overlop alony $y$-anis

Q. $\frac{d x^{2}-y^{2}-d x^{2}-y^{2} \text { along } 3 \text { axis }}{\delta-6 \text { ond. }}$


* Bond strength.
(1) Coaxial ovulap $\ggg \gg$ colateral overlap
(2) $\mid s-1 s>2 s-2 s>3 s-3 s$
(3) $2 s-2 s<2 s-2 p<2 p-2 p$ [along the axis]
Q. The strongest Bond among the following:
$\bigcirc 0$ at $\mid s-2 p$
c) $1 s-3 p 000$
$\infty$ b) $1 s-4 p$
d) $18-5 p$ O

of $a<b$
r) $a=b$
d) cont be compared
Q. in Bond strength of the following

Mona 2019
of $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{Asth}_{3}>\mathrm{SO}_{3}$
b) $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsF}_{3}<\mathrm{Sb}_{3}$
c) $\mathrm{NH}_{3}=\mathrm{PH}_{3}=\mathrm{ANH}_{3}=\$ 6 \mathrm{th}_{3}$

d) $\mathrm{PH}_{3}>\mathrm{NH}_{3}>\mathrm{ANF}_{3}>80+\xi$
hybridization.
$\mathrm{CH}_{4}$

$$
\begin{aligned}
& c \rightarrow 1 f^{*} 2 s^{2} 2 p^{2} \\
& C^{*} \\
& 1 . \\
& \text { 1 } 1 \text { 1 }
\end{aligned}
$$


redistribution of enery

$$
B B A=109^{\circ} 28^{\prime}
$$

Tetrahedral

$\bigcirc \infty \infty$ | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- |
| $\&_{5}^{3}$ |  |  |  |$\quad$ hyborid erbitals

(1).

(2).



$$
\ddot{N}+3=x^{2}-2 s^{2} 2 p^{3}
$$




* Electronic geometry:


Tetrahedral $\leftrightarrows$
Shape: bp lp $\alpha$

* $\frac{\text { ethene. }}{\mathrm{C}_{2} \mathrm{H}_{4}}$
* ethyme.





Triangular bipyramidal


VSEPR Theory
Valince shill electron pair rupulsion theory.
(1) $l p-l p>l p-l p>b p-b p$
(2) multiple bond-multiple bond $>$ muelti-single $>$ single-single

tetrahedrye-elecrenic geo
$\mathrm{CH}_{4}$
shape

tetrahedral

e- geo :- tetrahedral
Shape - Pyramidal
shape $\rightarrow$ bent/V
VSEPR

$$
\begin{array}{ll}
\sigma=2 & \Omega 180^{\circ} \\
l p=0 & \text { linear } \delta \beta \\
\sigma=3 \\
l p=0 & 120^{\circ}, \text { Trigonal } p l a m a r, ~
\end{array} \beta^{2}
$$





$$
\begin{aligned}
& \# \frac{\text { jue } a d v}{\sqrt{s p^{3} d^{3}}} \\
& \sigma=6 \\
& l p=\frac{1}{7} \\
& \sqrt{\text { नटखट case }} \\
& \begin{array}{l}
\sigma=6 \\
l p=1
\end{array} \quad \begin{array}{r}
\sigma=6 \\
l=1
\end{array} \\
& \text { Natkhat Case-1. Xef } f_{6} \text { and } I f_{6}^{-} \\
& \text {paridipate hylo } \\
& \left.=\chi_{e}=\begin{array}{r}
\sigma=6 \\
1 \\
=1
\end{array}\right\} \rightarrow \rightarrow \beta^{3} d^{3} \rightarrow
\end{aligned}
$$


$\frac{\text { imactive l.p. }}{1}$
I.p doern't participat in hifs
$l p \rightarrow$ pure s-orbital


Perfect octahedral

$a d \sigma$
Sp ${ }^{3} d$
$\longrightarrow$
more e. ne p atom.
wants to go to that orbital Which has lw \%s.

$H \rightarrow H=0$ non-polar bond
H -Cl $\mu \neq \mathrm{O}$ polar bond
 linear, $180^{\circ}, \mu=0$
bonds are polar molecule is non-polar


$$
\begin{array}{cc}
0 & B \\
\dot{N} t_{3} & \dot{N} f_{3}
\end{array}
$$

a) $A$ is more polar than $B$
b) $A$ is lex $\qquad$
c) $A$ is $=$
d) nat comparable.
(1) $e^{-}$cloud-symmetrical
(2)






$\mathrm{CO}_{3}$

Molecular Orbital The ore
(1) VBT- fail
$\longrightarrow$ oxygen (g)
$\ddot{O}=0$
all e's ar paired: dimas
(2)

$$
\begin{aligned}
& 1 \text { bend } \\
& 2 \text { bend } \\
& \$ \text { bond }
\end{aligned} \quad\{2.5 \text { bend }\}
$$

(3) VBT- bond $\rightarrow$ colour?
M.O.T.
(1) $\left[\begin{array}{l}\text { atom } \longrightarrow e^{-} \longrightarrow \text { atomic orbitals } \\ \text { moleule } \longrightarrow e^{-} \longrightarrow \text { moter }\end{array}\right.$
(2)

(3) No. of A.O. $=$ no. of m.o. formed.
(4). Hund's rub, Arffoar, Pauli's $\longrightarrow$ rules $\rightarrow e^{-}$in M.O.
(5)


* juado:

LIAO
Linear Combination of Atomic Orbitals. atom $A$ atom $B$
wave function $\Psi_{A} \longleftarrow \Psi_{B}$
Af $+\rho$
$\forall \theta$

$$
\begin{gathered}
\psi_{A}+\psi_{B} \\
\psi_{A}^{2}+\psi_{B}^{2}+2 \psi_{A} \psi_{B}
\end{gathered}
$$

bonding M.O.
$\psi_{A}-\psi_{B}$
( $A_{B}^{2}-\psi_{B}^{2}-2 \psi_{A} \psi_{B}$
Pantibonding m.O.

Casel.


Case 2.


Cas 3.


$\cos$
wrt-phase
$+8$

$\sigma_{\text {Is }}$
$+\frac{3+5}{+5}+$ gerade

$P \longrightarrow$ ungerade

$d \longrightarrow$ gerade




 $s-p-$ mixing.



XX SV shortcut
even no. of $e^{-} \longrightarrow$ diamas.
odd no. of $e^{-} \longrightarrow$ paramal.




$$
\left.\begin{array}{l}
C N \\
C N^{-} \\
\mathrm{NO}^{+} \\
\mathrm{NO}^{+}
\end{array}\right\}
$$

Fajan's Rule.
(1) bond $\rightarrow 100 \%$ ionic $100 \%$ covalent
(2) Covalent $\longrightarrow \%$ ionic character
(b) ionic $\qquad$ , \% covalent charactu
(4) $\mathrm{Na} \overline{\mathrm{l}} 100 \%$ ionic $\rightarrow$ spherical $e^{-}$density

$$
\begin{aligned}
& \mathrm{Na} \longrightarrow e^{-}+\mathrm{Na}^{+} \\
& \mathrm{Cl}+\mathrm{e}^{-} \longrightarrow \mathrm{Cl}^{-}
\end{aligned}
$$

(5) HoOd
covalent bond

$\%$ ionic charactu in covalent bond $\rightarrow$ Dipde


NaCl
ionic compound $\rightarrow$ cov. chanacth

$$
\left.\begin{array}{l}
\mathrm{KCl} \\
\mathrm{NaCl} \\
\mathrm{dicl}
\end{array}\right\} ?
$$



$$
\begin{aligned}
& * \text { Cation on P.P.P. } \propto \text { Zeff }^{\mathrm{Na}^{+} \mathrm{mg}^{2+} \mathrm{AA}^{3+}} \\
& \text { P.P. } \rightarrow \text { max } \mathrm{Al}^{3+} \\
& \mathrm{Mn}^{2+} \mathrm{Mn}^{+7} \\
& \text { low P.P. }
\end{aligned}
$$

Covalent character $\alpha$ Polarization


Ques.

more covalent chonactr:

H-Bonding.

$H-\mathrm{H}$ - $\mathrm{Hl} \propto H$ Bonding


(1). st. of hydrogen bond.

$$
\left.\begin{array}{l}
H-f \cdots \cdot H-F \\
H_{2} O \cdots \cdot H_{2} O \\
N H_{3} \cdots \cdots N H
\end{array}\right\} \quad\left\{\begin{array}{l}
H-F \cdots \cdots-F \\
H-F \cdots \cdot H O \\
H-F \cdots \cdots H_{3}
\end{array}\right\}
$$




## Join with us in Telegram

## TELEGRAM CHANNEL

- t.me/unacademyatoms

COMPLETE NOTES AND LECTURES

- tinyurl.com/unacademyatoms


## Unacademy Subscription



## If you want to be the BEST "Learn" from the BEST



## Step closer to achieving your dreams by cracking your State CET

Pre-book today at ₹49 and get an assured 50\% discount on launch price!

Launching on November 1, 2022
Register Now

Use Code


## Counselling Festival

 25 Oct - 31 Oct
## Interact with your Favourite Educator

## Special Surprise!

For the learners who attend the session

## Nurture Batch

## for IIT JEE Main and Advanced 2024

## Code: SAKSHI

## Batch highlights:

- Curated by India's Top Educators
- Coverage of Class 11 JEE syllabus
- Enhance conceptual understanding of JEE Main \& JEE Advanced subjects
- Systematically designed courses
- Strengthen JEE problem-solving ability

Prashant Jain
Mathematics Maestro


Ajit Lulla Physics Maestro


Sakshi Vora
Chemistry Maestro

Nishant Vora
Mathematics Maestro


Abhilash Sharma
Physics Maestro


Megha Khandelwal Chemistry Maestro

## Evolve Batch

Nishant Vora
Mathematic Maestro


Sakshi Ganotra
Organic \& Inorganic Chemistry Maestro


Prashant Jain Matherratics Maestro

Ajit Lulla Physics Maestro


Megha Khandelwal Chemistry Moestros


Abhilash Sharma
Physics Maestro

## Achiever Batch 2.0

## for IIT JEE Main and Advanced 2023 Droppers

## Code: SAKSHI

## Batch highlights:

- Learn from India's Top Educators
- Coverage of Class 11 \& 12 syllabus of JEE
- Deep dive at a conceptual level for JEE Main and JEE Advanced
- Systematic course flow of subjects and related topics
- Strengthening the problem-solving ability of JEE level problems

Nishant Vora
Mathematics Maestros


Ajit Lulla
Physics Maestros


Sakshi Vora
Chemistry Maestros

Prashant Jain Mathematics Maestros


Abhilash Sharma
Physics Maestros


Megha Khandelwal Chemistry Maestros


