Determinants

One Shot

$$
D=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

Nishant Vora

B.Tech - IIT Patna

\square 7+ years Teaching experience
$\square \quad$ Mentored 5 lac+ students
\square Teaching Excellence Award

\# BOunceBaok

Join with us in Telegram

TELEGRAM CHANNEL

- t.me/unacademyatoms

COMPLETE NOTES AND LECTURES

- tinyurl.com/unacademyatoms

Unacademy Subscription

If you want to be the BEST "Learn" from the BEST

Determinant

Determinants

$$
\begin{aligned}
& \underline{|A|}=\left|\begin{array}{ll}
\mathbf{a} & \mathbf{b} \\
\mathbf{c} & \mathbf{d}
\end{array}\right|_{2 \times 2}=\underline{\operatorname{det}(\mathbf{A})} \\
& \underline{|A|=\operatorname{det}(A)} \\
& \frac{\begin{array}{l}
1 \times 1 \\
2 \times 2 \\
3 \times 3 \\
4 \times 4
\end{array}}{1}
\end{aligned}
$$

Determinant value of $1 \times 1 \& 2 \times 2$

$$
\begin{aligned}
& A=|-2|_{1 \times 1}=(-2) \\
& A=\left|\begin{array}{l}
a \\
c
\end{array} x_{d}^{b}\right|_{2 x_{2}}=a d-b c
\end{aligned}
$$

The value of $\left.\left|\begin{array}{l}a+1 \\ a+2\end{array} \chi_{a-1}^{a-2}\right| \right\rvert\,$ is
A. $2 a^{2}$

$$
(a+1)(a-1)-(a-2)(a+2)
$$

B. 0
$=\left(x^{2}-1\right)-\left(x^{2}-4\right)$
C. -3
$=3$

The value of $\left|\begin{array}{c}1+\cos \theta \\ \sin \theta\end{array} \underset{1}{\sin \theta}-\cos \theta\right|$ is
A. 2
B. $-1 \Rightarrow(1+\cos \theta)(1-\cos \theta)-\sin ^{2} \theta$
C. $0 \Rightarrow\left(1-\cos ^{2} \theta\right)-\sin ^{2} \theta$
D. $\cos 2 \theta \Rightarrow 0$

Minor \& Cofactor

Minors

$$
\begin{aligned}
& \mathbf{D}=\left|\begin{array}{lll}
\mathbf{a}_{11} & \mathbf{a} 12 & \mathbf{a}_{13} \\
\mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{\mathbf { a } _ { 2 3 }} \\
\mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33}
\end{array}\right|_{3 \times 3} \\
& M_{11}=\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right| \quad M_{32}=\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right| \\
& M_{21}=\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|
\end{aligned}
$$

Cofactor :

$$
C_{i j}=(-1)^{i+j} M_{i j}
$$

$$
C_{11}=(-1)^{1+1} M_{11}=M_{11}
$$

$$
c_{12}=(-1)^{1+2} M_{12}=-M_{12}
$$

$$
c_{13}=(-1)^{1+3} m_{13}=m_{13}
$$

$$
C_{i j}=(-1)^{i+j} m_{i j}
$$

$$
1+j=\text { odd }
$$

$$
\left(\begin{array}{l}
c_{12}=-m_{12} \\
c_{21}=-m_{21} \\
c_{32}=-m_{32} \\
c_{23}=-m_{22}
\end{array}\right.
$$

$$
D=\left|\begin{array}{lll}
C_{i j}=(-1)^{i+j} & M_{i j} \\
\mathbf{a} \\
\mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} \\
\mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} \\
\mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33}
\end{array}\right| \quad D=\left|\begin{array}{ll}
+ & + \\
+ & + \\
+ & - \\
+
\end{array}\right|
$$

Expanding/Opening Determinant

Expanding w.r.t R1

$$
\begin{aligned}
& \Rightarrow a_{12} c_{12}+a_{22} c_{22}+a_{32} c_{32}
\end{aligned}
$$

Determinant value of 3×3
Minor Cofactor
$A=\left|\begin{array}{ccc}\hline 2 & -3 & 1 \\ 2 & 0 & -1 \\ 1 & 4 & 5\end{array}\right|$

$$
\begin{aligned}
& \frac{\text { w.r.t } R 1}{(2)(4)}+(-3)(-11)+(1)(8)=49 \\
& \frac{\text { w.r.t } C_{2}}{(-3)(-11)}+(0) 9+(4) 4=49
\end{aligned}
$$

Determinant value of 3×3

$$
\left|\begin{array}{ccc}
2 & -3 & 1 \\
2 & 0 & -1 \\
1 & 4 & 5
\end{array}\right|
$$

$$
\begin{aligned}
& (2)(3)+(-3)(4)+(1)(6) \Rightarrow 0 \\
& (-3)(8)+(0)(-11)+(4)(6)=0
\end{aligned}
$$

Cofactor property

In a determinant the sum of the product's of the element's of any row (column) with their corresponding cofactor's is equal to the value of determinant.

$$
\mathbf{D}=\left|\begin{array}{lll}
\mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} \\
\mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} \\
\mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33}
\end{array}\right|
$$

Cofactor property

$$
\left|\begin{array}{ccc}
2 & -3 & 1 \\
2 & 0 & -1 \\
1 & 4 & 5
\end{array}\right|
$$

\#Shortcut (Rule of Sarrus)

$$
\left|\begin{array}{lll}
a & b & c \\
e & f & g \\
h & i & j
\end{array}\right|=\left\lvert\, \begin{array}{lll}
+ & + \\
a & b \\
e, & i & i \\
h & i & i \\
i & i & i
\end{array}\right.
$$

\#Shortcut (Rule of Sarrus)

$$
\begin{aligned}
& \left|\begin{array}{ll}
a & x_{d}^{b} \\
c
\end{array}\right| \\
& a d-b c
\end{aligned}
$$

$$
\begin{aligned}
& (0+3+8)-(0-8-30) \\
& =49
\end{aligned}
$$

\#Shortcut (Rule of Sarrus)

$$
\begin{aligned}
& (2+6+y)-(y+4+3) \\
= & 1
\end{aligned}
$$

* Properties of Determinant

Properties of Determinants
(1) $\left|A^{\top}\right|=|A|$

1. $\left|A^{\top}\right|=|A|$
(2) $|I|=1$

Note: | I | = 1

$$
\begin{aligned}
\text { Ex }\left|\begin{array}{ll}
2 \\
4 & x_{5}^{3}
\end{array}\right| & =\left|\begin{array}{ll}
2 & 4 \\
3 & 5
\end{array}\right| \\
10-k & =10-12
\end{aligned}
$$

Properties of Determinants
2. If any two rows (or columns) of a determinant be interchanged, the value of determinant is changed in sign only.

$$
\left|\begin{array}{lll}
a & b & c \\
x & q & r \\
x & z
\end{array}\right|=-\left|\begin{array}{lll}
p & q & r \\
a & b & c \\
x & y & z
\end{array}\right|
$$

Properties of Determinants
3. If row or columns are rotated in cyclic order then value of determinant is unchanged

$$
\begin{aligned}
& \left|\begin{array}{lll}
a & b & c \\
p & q & r \\
x & y & z
\end{array}\right|=\left|\begin{array}{lll}
x & y & z \\
a & b & c \\
p & q & r
\end{array}\right| \\
& -\left|\begin{array}{lll}
p & q & r \\
a & b & c \\
x & y & z
\end{array}\right|
\end{aligned}
$$

Properties of Determinants
4. If a determinant has any two rows (or columns) identical, then its value is zero.

$$
\begin{aligned}
& \left\lvert\, \begin{array}{lll}
\left.\begin{array}{lll}
a & b & c \\
d & b & c \\
x & y & z
\end{array} \right\rvert\, & =0 \quad \mid: 2 \\
x(0)+y(0)+z(0)=0 \quad\left|\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
x & y & z
\end{array}\right|=0 \\
x\left|\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3 \\
x & y & z
\end{array}\right|=0
\end{array}\right.,=0
\end{aligned}
$$

Properties of Determinants

5. Scalar multiplication: Scalar will be multiplied in any one row (or column)

$$
\begin{aligned}
\text { e.g. If } D & =\left|\begin{array}{lll}
\mathbf{a}_{1} & \mathbf{b}_{1} & \mathbf{c}_{1} \\
\mathbf{a}_{2} & \mathbf{b}_{2} & \mathbf{c}_{2} \\
\mathbf{a}_{3} & \mathbf{b}_{3} & \mathbf{c}_{3}
\end{array}\right| \text { then } \mathrm{KD}=\left|\begin{array}{|ccc}
\frac{\mathbf{k a}_{1}}{} & \mathbf{k b _ { 1 }} & \mathbf{k \mathbf { c } _ { 1 }} \\
\mathbf{a}_{2} & \mathbf{b}_{2} & \mathbf{c}_{2} \\
\mathbf{a}_{3} & \mathbf{b}_{3} & \mathbf{c}_{3}
\end{array}\right| \\
K\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] & =\left[\begin{array}{cc}
K a & K b \\
K c & K d
\end{array}\right]
\end{aligned}
$$

Properties of Determinants
6. $|\mathrm{kA}|=\mathrm{k}^{\mathrm{n}}|\mathrm{A}|$, where n is order of A .

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
K A & =\left[\begin{array}{ll}
k a & k b \\
k c & k d
\end{array}\right] \\
|K A| & =\left|\begin{array}{ll}
k a & k b \\
\mid k c & k d
\end{array}\right| \\
& =k^{2}\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
\end{aligned}
$$

$$
6: 1
$$

Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be two 3×3 real matrices such that $b_{i j}=(3)^{(i+j-2)} a_{i j}$, where $i, j=1,2,3$. If the determinant of B is 81 , then the determinant of A is :

(Given)

$$
|A|=?
$$

C. $1 / 81$
D. $1 / 9$

$$
\left.\begin{aligned}
& B=\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]_{3 \times 3} \\
& |B|=\left|\begin{array}{lll}
a_{11} & 3 a_{12} & 3^{2} a_{13} \\
\frac{3 a_{21}}{3^{2} a_{31}} & 3^{2} a_{22} & 3^{3} a_{23} \\
3^{4} a_{33} & 3^{4}
\end{array}\right|=81
\end{aligned} \right\rvert\,=
$$

$$
\begin{aligned}
& 3^{3}\left|\begin{array}{ll}
a_{11} & \begin{array}{l}
8 \\
a_{21} \\
a_{31}
\end{array} \\
\begin{array}{ll}
8 & a_{12} \\
8 & a_{22} \\
8 & a_{32}
\end{array} & \begin{array}{c}
\uparrow \\
z^{2} a_{13} \\
z^{2}
\end{array} a_{23} \\
3^{3} & a_{33}
\end{array}\right|=81 \\
& 3^{3} \cdot 3^{3}|A|=81 \\
& |A|=\frac{1}{9}
\end{aligned}
$$

Let A be a $\underline{3 \times 3}$ matrix with $\operatorname{det}(A)=4$. Let $\left(R_{i}\right)$ denote the $i^{\text {th }}$ row of A. If a matrix (B) is obtained by performing the operation $R_{2} \rightarrow 2 R_{2}+5 R_{3}$ on $2 A$, then $\operatorname{det}(B)$ is equal to

B. $16 \quad 2 A=\left[\begin{array}{lll}2 a & 2 b & 2 c \\ \text { C. } & 80 & 24 \\ 2 x & 2 z \\ 2 p & 29 & 2 r\end{array}\right]$

$$
2\left(R_{2}\right)+5 R_{3}
$$

D. $128 \quad|B|=\left|\begin{array}{ccc}2 a & 2 b & 2 c \\ \frac{4 x+10 p}{} 4 y+10 q & 4 z+10 r \\ 2 p & 2 q & 2 r\end{array}\right|$

$$
\begin{aligned}
|B| & =\left|\begin{array}{|ccc}
2 a & 2 b & 2 c \\
\frac{4 x}{4 x} & 4 y & 4 z
\end{array}\right|+\left|\begin{array}{ccc}
2 a & 2 b & 2 c \\
10 p & 10 q & 10 r \\
2 p & 2 q & 2 r
\end{array}\right| \\
& =16\left|\begin{array}{ccc}
a & b & c \\
x & y & z \\
p & q & r
\end{array}\right| \\
& =16 \times|A| \\
& =16 \times 4 \\
& =64
\end{aligned}
$$

Let \underline{p} and $\underline{p+2}$ be prime numbers and let

$$
\Delta=\frac{(p!(p+1)!(p+2)!}{(p+1)!(p+2)!(p+3)!} \quad \alpha_{\text {max }}^{(p+2)!(p+3)!(p+4)!} \quad \beta_{\max }
$$

Then the sum of the maximum values of α and $\underline{\beta}$, such that p^{α} and $(p+2)^{\beta}$ divide Δ, is -4

$$
\begin{aligned}
& \Delta=p!(p+1)!(p+2)!\left|\begin{array}{lll}
1 & p+1 & (p+2)(p+1) \\
1 & p+2 & (p+3)(p+2) \\
1 & c+3 & (p+4)(p+3)
\end{array}\right| \begin{array}{l}
\text { JEE Main } \\
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{2}
\end{array} \\
& \Delta=p!(p+1)!(p+2)!\mid p+1)
\end{aligned}
$$

$$
\begin{aligned}
& p^{\alpha=3}(p+2)^{\beta=1} \\
\Delta= & p!(p+1)!(p+2)!\times 2 \\
= & p(p-1)!(p+1)(p)(p-1)!(p+2)(p+1) p(p-1)!\times 2
\end{aligned}
$$

Properties of Determinants

Note: The value of a skew symmetric determinant of odd order is zero.

AA AA
Skew - Sym. + odd order
$|A|=0$
(1) all diagonal elements must be " 0 "
(2) Mirror Image \Rightarrow Sign will be opp.

Properties of Determinants

7. Adding Determinants

$$
\begin{aligned}
& \left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|+\left|\begin{array}{ccc}
\mathbf{x} & y & z \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=\left|\begin{array}{ccc}
\frac{a_{1}+x}{a_{2}} & \frac{b_{1}+y}{b_{2}} & \frac{c_{1}+z}{c_{2}} \\
a_{3} & b_{3} & c_{3}
\end{array}\right| \\
& \left|\begin{array}{l}
-\quad-\sqrt{1} \\
- \\
2 \\
3
\end{array}\right|+\left|\begin{array}{l}
\left.-\quad-\begin{array}{c}
4 \\
- \\
- \\
5 \\
6
\end{array} \right\rvert\,
\end{array}\right| \\
& \text { One at a time }
\end{aligned}
$$

Properties of Determinants

8. Splitting Determinants

$$
\left|\begin{array}{|cc|}
\frac{\mathbf{a}_{1}+\mathbf{x}}{} & \mathbf{b}_{1}+\mathbf{y} \\
\left\lvert\, \begin{array}{lll}
\mathbf{a}_{2} & \mathbf{c}_{1}+\mathbf{z} \\
\mathbf{a}_{3} & \mathbf{b}_{3} & \mathbf{c}_{2} \\
\mathbf{c}_{3}
\end{array}\right. \\
\text { One at a time }
\end{array}\right|=\left|\begin{array}{lll}
\mathbf{a}_{1} & \mathbf{b}_{1} & \mathbf{c}_{1} \\
\mathbf{a}_{2} & b_{2} & \mathbf{c}_{2} \\
\mathbf{a}_{3} & \mathbf{b}_{3} & \mathbf{c}_{3}
\end{array}\right|+\left|\begin{array}{lll}
\mathbf{x} & \mathbf{y} & \mathbf{z} \\
\mathbf{a}_{2} & b_{2} & \mathbf{c}_{2} \\
\mathbf{a}_{3} & \mathbf{b}_{3} & \mathbf{c}_{3}
\end{array}\right|
$$

Find $\left|\begin{array}{ccc}\mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{a + 2 x} & \mathbf{b}+2 \mathbf{y} & \mathbf{c}+2 \mathrm{z} \\ \mathbf{x} & \mathbf{y} & \mathbf{z}\end{array}\right|$

$$
\begin{aligned}
& =\left|\begin{array}{lll}
a & b & c \\
a & b & c \\
x & y & z
\end{array}\right|+2\left|\begin{array}{ccc}
a & b & c \\
x & y & z \\
x & y & z
\end{array}\right| \\
& =0+0 \\
& =0
\end{aligned}
$$

Properties of Determinants

$$
\text { 9. }|A B|=|A||B| \quad|A B|=|A| \cdot|B| \left\lvert\, \begin{aligned}
& 4=1 \times 4 \\
&|A|
\end{aligned}\right.
$$

$$
|A|=\left|\begin{array}{ll}
1 \\
1
\end{array} X_{2}^{1}\right| \text { and } B=\left|\begin{array}{ll}
1 & 0 \\
1 & 4
\end{array}\right| \text { Then } A B=\left|\begin{array}{ll}
2 & 4 \\
3 & 8
\end{array}\right|
$$

$$
\begin{aligned}
& |A|=1 \\
& |B|=4
\end{aligned}
$$

$$
\begin{aligned}
& A B=\left|\begin{array}{ll}
1 & 1 \\
\hline 1 & 2
\end{array}\right| \cdot\left|\begin{array}{ll}
0 \\
1
\end{array}\right| \quad|A B C|=|A||B||C| \\
& 4
\end{aligned}|\quad| \begin{array}{ll}
0 \\
|A B| & \left|\begin{array}{ll}
2 & 4 \\
3 & X_{8}
\end{array}\right|=16-12=4
\end{array}
$$

Properties of Determinants
10. If $\operatorname{det}(A)=0$, then A is known as singular matrix.
eg. $\left.\underbrace{\left\lvert\, \begin{array}{l}1 \\ 2\end{array} \times_{2}^{1}\right.} \right\rvert\,=0 \quad\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$
Singular Matrix
11) $\left|A^{n}\right|=|A|^{n}$

Let β be a real number. Consider the matrix

$$
I+A=\left(\begin{array}{ccc}
\beta & 0 & 1 \\
2 & 1 & -2 \\
3 & 1 & -2
\end{array}\right)+\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 13 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

If $A^{7}-(\beta-1) A^{6}-\beta A^{5}$ is a singular matrix, then the value of 9β is \qquad .

$$
\begin{array}{rlr}
\left|A^{7}-(\beta-1) A^{6}-\beta A^{5}\right|=0 & |A|=\beta(0)+1(-1) \\
\left|A^{5}\left(A^{2}-(\beta-1) A-\beta I\right)\right|=0 & |A|=-1 \\
\left|A^{5}\left(A^{2}-\beta A+\underline{~}^{A-\beta I}\right)\right|=0 & |A+I| & =\left\lvert\, \begin{array}{cc}
\beta+1 & 0 \\
2 & 2 \\
3 & 1 \\
\left|A^{5}(A+I)(A-\beta I)\right|=0 &
\end{array}\right. \\
& =(\beta+1)(0)+ \\
& & =-4
\end{array}
$$

JEE Adv. 2022

$$
\underbrace{|A|^{5}} \cdot \underbrace{|A+I|} \cdot|A-B I|^{\circ}=0
$$

non-zero non-Zero

$$
\begin{gathered}
A-\beta I=\left[\begin{array}{ccc}
\beta & 0 & 1 \\
2 & 1 & -2 \\
3 & 1 & -2
\end{array}\right]-\left[\begin{array}{ccc}
\beta & 0 & 0 \\
0 & \beta & 0 \\
0 & 0 & \beta
\end{array}\right] \\
|A-\beta I|=\left[\begin{array}{ccc}
0 & 0 & 1 \\
2 & 1-\beta & -2 \\
3 & 1 & -2-\beta
\end{array}\right]=0 \\
2-3(1-\beta)=0 \\
\beta=\frac{1}{3} \\
9 \beta=3 \text { Ans }
\end{gathered}
$$

Elementary Transformation
11. The value of determinant remains same if we apply elementary transformation

$$
R_{1} \rightarrow R_{1}+k R_{2}+m R_{3} \text { or } C_{1} \rightarrow C_{1}+k C_{2}+m C_{3}
$$

Row transform

$$
\begin{aligned}
& R_{1} \rightarrow 1 R_{1}+a R_{2}+b R_{3} \\
& R_{3} \rightarrow 1 R_{3}+2 R_{1}-3 R_{2}
\end{aligned}
$$

Prove thot $\left(\begin{array}{ccc}\frac{2 a+b}{3 a}\left(\frac{3 a+2 b}{6 a+3 b}\right. & -\frac{a+b+c}{10 a+3 b+2 c}+6 b+3 c\end{array}\right)=\mathrm{a}^{3}$
objective. (1) 0 O
(2) $1 \quad 1 \quad 1$

$$
3 a+2 b-2(a+y)
$$

$$
\begin{aligned}
& R_{2} \rightarrow R_{2}-2 R_{1} \\
& R_{3} \rightarrow R_{3}-3 R_{1} \\
& \left|\begin{array}{lll}
9 \\
9 \\
q
\end{array}\right| \begin{array}{ll}
a+b & a+b+c \\
a & 3 a
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =a\left(7 a^{2}+3 \mu_{0}-6 a^{2}-3 / a b\right) \\
& =a^{3}
\end{aligned}
$$

The maximum value of $f(x)=\left|\begin{array}{lll}\frac{\sin ^{2} x}{+\sin ^{2} x} & \frac{1+\cos ^{2} x}{\cos 2 x} \\ \frac{\cos ^{2} x}{\uparrow} & \frac{\cos 2 x}{\uparrow} & \cos 2 x \\ \frac{\cos ^{2} x}{\uparrow} & \sin 2 x\end{array}\right|, x \in R$ is
A. $\sqrt{7}$

$$
c_{1} \rightarrow c_{1}+c_{2}
$$

16th Mar, 2021 (shift 2)

$$
\begin{aligned}
& \text { B. } \left.3 / 4 \quad f(x)=\left|\begin{array}{lll}
\frac{2}{2} & \left.\frac{1+\cos ^{2} x}{\frac{\cos 2 x}{1}} \begin{array}{ll}
\frac{\cos ^{2} x}{\cos ^{2} x} & \frac{\cos 2 x}{\sin 2 x}
\end{array} \right\rvert\, \\
\frac{R_{1} \rightarrow R_{1}-R_{2}}{f(x)=1 \cos 2 x-2 \sin 2 x} \\
\sqrt{1^{2}+2^{2}}=\sqrt{5}
\end{array}\right| \begin{array}{lll}
0 & 0 \\
2 & \cos ^{2} x & \cos 2 x \\
1 & \cos ^{2} x & \sin 2 x
\end{array} \right\rvert\,=-1(2 \sin 2 x-\cos 2 x)
\end{aligned}
$$

The solutions of the equation $\rightarrow\left|\begin{array}{ccc}\frac{1+\sin ^{2} x}{\cos ^{2} x} & \frac{\sin ^{2} x}{1+\cos ^{2} x} & \frac{\sin ^{2} x}{\cos ^{2} x} \\ 4 \sin 2 x & \frac{1 \sin 2 x}{1+4 \sin 2 x}\end{array}\right|=0$

$$
R_{1} \rightarrow R_{1}+R_{2}
$$

18th Mar, 2021 (shift 1)
A. $\pi / 12, \pi / 6$
B. $\pi / 6,5 \pi / 6$
C. $5 \pi / 12,7 \pi / 12$
D. $7 \pi / 12,11 \pi / 12$

$$
\left|\begin{array}{lll}
\frac{2}{\cos ^{2} x} & \underline{1} & 1 \\
\frac{1+\cos ^{2} x}{\sin 2 x} & \cos ^{2} x \\
4 \sin 2 x & 1+4 \sin 2 x
\end{array}\right|=0
$$

$$
C_{1} \rightarrow C_{1}-C_{2}
$$

$$
\begin{array}{c|c}
1(2+8 \sin 2 x-4 \sin 2 x)=0 & \begin{array}{l}
\frac{s-1}{} \sin (\alpha)=\frac{1}{2} \\
2+4 \sin 2 x=0 \\
\sin 2 x=\frac{-1}{2} \\
2 x=\frac{7 \pi}{6}, \frac{11 \pi}{6} \\
x=\frac{s \pi}{12}, \frac{1 \pi}{12}
\end{array} \\
\hline \left.\frac{s}{\top}|c| c \right\rvert\, \\
\hline
\end{array}
$$

Let $f(x)=\left|\begin{array}{ccc}\sin ^{2} x & -2+\cos ^{2} x & \cos 2 x \\ 2+\sin ^{2} x & \cos ^{2} x & \cos 2 x \\ \sin ^{2} x & \cos ^{2} x & 1+\cos 2 x\end{array}\right|, x \in[0, \pi]$
Then the maximum value of $f(x)$ is equal to

HOMEWORK

The total number of distinct $x \in R$ for which is
$2 \mathrm{sol}^{n}$

$$
\begin{aligned}
& x^{3}\left|\begin{array}{lll}
1 & 1 & 1+x^{3} \\
2 & 4 & 1+8 x^{3} \\
3 & 9 & 1+27 x^{3}
\end{array}\right|=10 \\
& x^{3}\left[\left.\begin{array}{lll}
1 & 1 & 1 \\
2 & 4 & 1 \\
3 & 9 & 1
\end{array}\left|+x^{3}\right| \begin{array}{lll}
1 & 1 & 1 \\
2 & 4 & 8 \\
3 & 9 & 27
\end{array} \right\rvert\,\right]=10 \\
& x^{3}\left(2+12 x^{3}\right)=10
\end{aligned}
$$

[JEE Adv

$$
2016]
$$

$$
\begin{aligned}
& 2 x^{3}+12 x^{6}=10 \\
& x^{3}=t \\
& 2 t+12 t^{2}=10 \\
& 6 t^{2}+t-5=0 \\
& 6 t^{2}+6 t-5 t-5=0 \\
& (6 t-5)(t+1)=0 \\
& t=\frac{5}{6},-1
\end{aligned}
$$

$$
x^{3}=\frac{5}{6},-1
$$

Let $\underline{\omega}$ be the complex number $\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}$ Then the number of

$$
\begin{aligned}
& \Rightarrow z^{3}=0 \\
& \Rightarrow z=0 \text { only sol }
\end{aligned}
$$

JEE Adv 2010

Let α and β be the roots of the equation $x^{2}+x+1=0$. Then for $y \neq 0$ in $R,\left|\begin{array}{ccc}y+1 & \alpha & \beta \\ \alpha & y+\beta & 1 \\ \beta & 1 & y+\alpha\end{array}\right|$ is equal to: $\quad\left\{\begin{array}{l}w=\alpha \\ \omega^{2}=\beta\end{array}\right.$

$$
\begin{aligned}
& \Rightarrow y\left\{1\left((y+w)\left(y+\omega^{2}\right)-y\right)-1(y \omega)+1\left(-\omega^{2} y\right)\right\} \\
& \Rightarrow y\left\{y^{2}+\omega^{2} / y+w / y-y w-\omega^{2} / y\right\} \\
& \Rightarrow y^{3}
\end{aligned}
$$

2Let ω be the complex cube root of unity with $\omega \neq 1$ and $P=\left[P_{i j}\right]$ be a $n \times n$ matrix with $\mathrm{P}_{\mathrm{ij}}=\omega^{\mathrm{i}+j}$. Then $\mathrm{P}^{2} \neq \mathrm{O}$, when $\mathrm{n}=$

$$
\begin{aligned}
& \text { A. } 57 \quad p_{i j}=\omega^{i+j} \quad p^{2} \neq 0 \quad n=\text { ? } \\
& \text { 2. } 55 \xrightarrow{\text { D. }} \frac{\text { for } n=2}{} \quad P=\left[\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right]_{2 \times 2}=\left[\begin{array}{ll}
\omega^{2} & 1 \\
1 & \omega
\end{array}\right] \\
& \text { [JEE Adv 2013] } \\
& \text { (BCD }
\end{aligned}
$$

for $n=3$

$$
\begin{aligned}
& P=\left[\begin{array}{lll}
P_{11} & P_{12} & P_{13} \\
P_{21} & P_{22} & P_{23} \\
P_{31} & P_{32} & P_{33}
\end{array}\right]_{3 \times 3}=\left[\begin{array}{ccc}
\omega^{2} & 1 & \omega \\
1 & \omega & \omega^{2} \\
\omega & \omega^{2} & 1
\end{array}\right] \\
& P^{2}\left.=\left[\begin{array}{ccc}
\omega^{2} & 1 & \omega \\
1 & \omega & \omega^{2} \\
\omega & \omega^{2} & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
\omega^{2} & 1 & \omega \\
1 \\
\omega
\end{array}\right] \begin{array}{lll}
\omega & \omega^{2} \\
\omega^{2} & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& n \rightarrow \text { multi of } 3 \quad P^{2}=0 \\
& n \rightarrow \text { not " "n } P^{2} \neq 0
\end{aligned}
$$

Let $\underline{\omega \neq 1}$ be the cube root of unity and $\underline{\underline{S}}$ be the set of all non-singular matrices of the form $\left[\begin{array}{ccc}1 & a & b \\ \omega & 1 & c \\ \omega^{2} & \omega & 1\end{array}\right]$
where each of a, b and c is either ω or ω^{2}. Then the number of distinct matrices in the set S is
A. 2
B. 6

$$
\left|\begin{array}{ccc}
1 & a & b \\
w & 1 & c \\
w^{2} & w & 1
\end{array}\right| \neq 0
$$

$$
a, b, c \in\left\{w, w^{2}\right\}[J E E \text { Adv 2011] }
$$

C. 4

$$
1(1-c w)-a\left(w-c w^{2}\right)+b(0) \neq 0
$$

D. 8

$$
\begin{aligned}
& (1-c w)-a w(1-c w) \neq 0 \\
& (1-a w)(1-c w) \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& (1-a \omega)(1-c \omega) \neq 0 \\
& \uparrow \quad{ }_{l} \neq \omega^{2} \quad c \neq \omega^{2}
\end{aligned}
$$

$\left\{\begin{array}{cc|c|c}a & b & c \\ \hline \text { (1) } & \omega & \omega & \omega \\ \text { (2) } & \omega & \omega^{2} & \omega\end{array}\right.$

Ans:- 2

If $\mathrm{A}=\left(\begin{array}{cc}0 & \sin \alpha \\ \sin \alpha & 0\end{array}\right)$ and $\operatorname{det}\left(\mathrm{A}^{2}-\frac{1}{2} \mathrm{I}\right)=0$, then a possible value of α is
A. $\begin{array}{ll}\pi / 2 & \left.A^{2}=\left[\begin{array}{ll}0 & \sin \alpha \\ \sin \alpha & 0\end{array}\right] \cdot\left[\begin{array}{cc}0 & \sin \alpha \\ \sin \alpha & 0\end{array}\right], ~\right] ~\end{array}$

17th Mar, 2021 (shift 1)
c. $\pi / 4$
D. $\pi / 6$

$$
A^{2}=\left[\begin{array}{cc}
\sin ^{2} \alpha & 0 \\
0 & \sin ^{2} \alpha
\end{array}\right]
$$

$$
\begin{aligned}
&\left|A^{2}-\frac{1}{2} I\right|= {\left[\begin{array}{cc}
\sin ^{2} \alpha-\frac{1}{2} & 0 \\
0 & \sin ^{2} \alpha-\frac{1}{2}
\end{array}\right]=0 } \\
&\left(\sin ^{2} \alpha-\frac{1}{2}\right)^{2}=0 \Rightarrow \sin ^{2} \alpha=\frac{1}{2}
\end{aligned}
$$

2

Let \underline{A} be a 2×2 matrix with $\operatorname{det}(\mathrm{A})=-1$ and get $((A+I)(\operatorname{Adj}(A)+I))=4$. Then the sum of the diagonal elements of A can be :
(A) -1
(B) 2

JEE Main 2022
(C) 1
(D) $-\sqrt{2}$

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
a \\
c<b
\end{array}\right]=a d-b c=-1 \\
& |(A+I)(\operatorname{adj} A+I)|= \\
& (a+d)^{2}=4 \\
& |A+I|=\left[\begin{array}{cc}
a+1 & b \\
c & d+1
\end{array}\right] \\
& =(a+1)(d+1)-b c \\
& =a d+a+d+x-b / c \\
& =a+d
\end{aligned}
$$

$$
\begin{aligned}
& 2 \times 2 \\
& (a+d)^{2}=4 \\
& \operatorname{adj} A=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \\
& A \operatorname{adj} A=|A| I \\
& =-I \\
& |\operatorname{adj} A+I|=\left|\begin{array}{cc}
d+1 & -b \\
-c & a+1
\end{array}\right| \\
& =(d+1)(a+1)-b c \\
& =a+d+y+a \not x-y / c \\
& =a+d \\
& |A \operatorname{agg} A+A+\operatorname{adj} A+\not z|=4 \\
& |A+\operatorname{adj} A|=4 \\
& \begin{array}{c}
\left|\begin{array}{ll}
{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \right\rvert\,=4} \\
\left|\begin{array}{c}
a+d \\
0
\end{array}\right| & a+d
\end{array}\right|=4
\end{array}
\end{aligned}
$$

Domain
Let $|M|$ denote the determinant of a square matrix M. Let $g:\left[0, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$ be the function defined by

$$
\underline{g(\theta)}=\sqrt{f(\theta)-1}+\sqrt{f\left(\frac{\pi}{2}-\theta\right)-1}
$$

Let $p(x)$ be a quadratic polynomial whose roots are the maximum and minimum values of the function $g(\theta)$, and $p(2)=2-\sqrt{2}$. Then, which of the following is/are TRUE?
(x) $p\left(\frac{3+\sqrt{2}}{4}\right)<0 \frac{3+1.4}{4}=1.1$

$$
\ggg\left(\frac{1+3 \sqrt{2}}{4}\right)>0 \frac{1+3(1.4)}{4}=1.3
$$

$$
\begin{aligned}
& \cos \left(\theta+\frac{\pi}{4}\right) \\
= & \sin \left(\frac{\pi}{2}-\theta-\frac{\pi}{4}\right) \\
= & \sin \left(\frac{\pi}{4}-\theta\right)
\end{aligned}
$$

$$
\left|\begin{array}{ccc}
0 & k & - \\
\vdots & 0 & - \\
- & - & 0
\end{array}\right|
$$

Skew Sym + old order

$$
|00|=0
$$

$$
\text { al } p\left(\frac{5 \sqrt{2}-1}{4}\right)>0 \frac{5(1.4)-1}{4}=1.5
$$

$$
x p\left(\frac{5-\sqrt{2}}{4}\right)<0 \quad \frac{5-1.4}{4}=0.9 \quad \theta=-\sin \left(\theta-\frac{\pi}{4}\right)
$$

$$
\begin{aligned}
& g(0)=1 \quad g\left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2} \\
& g\left(\frac{\pi}{2}\right)=1 \quad \text { max }=\sqrt{2} \\
& f(\theta)=\frac{1}{2}\left|\begin{array}{ccc}
2 & \sin \theta & 1 \\
0 & 1 & \sin \theta \\
0 & -\sin \theta & 1
\end{array}\right| \\
& =\frac{1}{x} 2\left(1+\sin ^{2} \theta\right) \\
& f(\theta)=1+\sin ^{2} \theta \\
& g(\theta)=\sqrt{f(\theta)-1}+\sqrt{f\left(\frac{\pi}{2}-\theta\right)-1} \\
& =\sqrt{1+\sin ^{2} \theta-1}+\sqrt{1+\cos ^{2} \theta-1} \\
& =|\sin \theta|+|\cos \theta|=\sin \theta+\cos \theta \mid \\
& \text { GRAPH } \\
& p(x)=K(x-\sqrt{2})(x-1) \\
& 2-\sqrt{2}=k(2-\sqrt{2})(2-1)
\end{aligned}
$$

$$
\begin{aligned}
& p(x)=(x-1.414)(x-1) \\
& p(1.1)=(1.1-1.4)(1.1-1)=\Theta \\
& P(1.3)=(1.3-1.4)(1.3-1)=\Theta \\
& P(1.5)=(1.5-1.4)(1.5-1)=\oplus \\
& P(0.9)=(0.9-1.4)(0.9-1)=\oplus
\end{aligned}
$$

Special Determinants

$$
\begin{aligned}
& \text { * }\left|\begin{array}{ccc}
1 & x & x^{2} \\
1 & y & y^{2} \\
1 & z & z^{2}
\end{array}\right|=(x-y)(y-z)(z-x) \\
& \text { * }\left|\begin{array}{lll}
1 & x & x^{3} \\
1 & y & y^{3} \\
1 & z & z^{3}
\end{array}\right|=(x-y)(y-z)(z-x)(x+y+z)
\end{aligned}
$$

Special Determinants

$$
\begin{aligned}
& \left|\begin{array}{lll}
1 & x & x^{2} \\
1 & y & y^{2} \\
1 & z & z^{2}
\end{array}\right|=\frac{(x-y)(y-z)(z-x)}{R_{2} \rightarrow R_{2}-R_{1}} \begin{array}{l}
R_{2} \rightarrow R_{3}-R_{1}
\end{array} \\
& \left|\begin{array}{lll}
1 & x & x^{2} \\
0 & y-x & (y-x)(y+x) \\
0 & \underline{z-x} & \underline{z-x)(z+x)}
\end{array}\right|=(y-x)(z-x)\left|\begin{array}{lll}
4 & x & x^{2} \\
0 & 1 & y^{y+x} \\
0 & 1
\end{array}\right| \\
& =(y-x)(z-x)(z-y) \\
& =(x-y)(y-z)(z-x)
\end{aligned}
$$

2

$$
\begin{aligned}
& \begin{array}{lll}
1 & 1 & 1 \\
\checkmark_{0} & 0 & 20
\end{array} \\
& R_{1} \rightarrow R_{1}-\left(R_{2}+R_{3}\right) \\
& \left|\begin{array}{ccc}
0 & -2 a & -2 a \\
c & c+a & a \\
b & a & a+b
\end{array}\right|=-2 a\left|\begin{array}{ccc}
0 & 1 & 1 \\
c & c+a & a \\
b & a & a+b
\end{array}\right| \\
& =-2 a\left|\begin{array}{ccc}
0 & 0 & థ \\
c & x^{c} & d \\
-b & q+b
\end{array}\right| \\
& =-2 a(-2 b c) \\
& =4 a b c
\end{aligned}
$$

2

Show that $\left|\begin{array}{lll}\mathbf{b}+\mathbf{c} & \mathbf{a}+\mathbf{b} & \mathbf{a} \\ \mathbf{c}+\mathbf{a} & \mathbf{b}+\mathbf{c} & \mathbf{b} \\ \mathbf{a}+\mathbf{b} & \mathbf{c}+\mathbf{a} & \mathbf{c}\end{array}\right|=\mathbf{a}^{3}+\mathbf{b}^{3}+\mathbf{c}^{3}-3 \mathbf{a b c}$.
H.W.
2

$$
\bigoplus_{\text {Nut }}\left|\begin{array}{ccc}
\mathbf{a}-\mathbf{b}-\mathbf{c} & \mathbf{2 a} & \mathbf{2 a} \\
\mathbf{2 b} & \mathbf{b}-\mathbf{c}-\mathbf{a} & \mathbf{2 b} \\
\mathbf{2 c} & \mathbf{2 c} & \mathbf{c}-\mathbf{a}-\mathbf{b}
\end{array}\right|=(\mathbf{a}+\mathbf{b}+\mathbf{c})^{3} \text {. }
$$

H.W.
2

Show that $\left|\begin{array}{lll}x & x^{2} & y z \\ y & y^{2} & z x \\ z & z^{2} & x y\end{array}\right|=(x-y)(y-z)(z-x)(x y+y z+z x)$
Concept
\# chalaki

$$
\begin{array}{ccc}
x x-x^{2} & x^{3} & y z x \\
x y \rightarrow y^{2} & y^{3} & z x y \\
x z \rightarrow z^{2} & z^{3} & x y z
\end{array}\left|=\left|\begin{array}{lll}
x^{2} & x^{3} & 1 \\
y^{2} & y^{3} & 1 \\
z^{2} & z^{3} & 1
\end{array}\right|\right.
$$

$$
\left.\begin{aligned}
& \left|\begin{array}{ccc}
x^{2} & x^{3} & 1 \\
\frac{y^{2}-x^{2}}{} y^{3}-x^{3} & 0 \\
\frac{z^{2}-x^{2}}{} z^{3}-x^{3} & 0
\end{array}\right| \\
& (y-x)(z-x)\left|\begin{array}{ll}
x^{2} & x^{3} \\
y+x & y^{2}+x^{2}+x y \\
z+x & z^{2}+x^{2}+x y
\end{array}\right|
\end{aligned} \right\rvert\,
$$

2

Show that $\left|\begin{array}{ccc}a^{2}+1 & \mathbf{a b} & \mathbf{a c} \\ \mathbf{a b} & \mathbf{b}^{2}+1 & b \mathbf{b c} \\ \mathbf{a c} & \mathbf{b c} & \mathbf{c}^{2}+1\end{array}\right|=1+\mathbf{a}^{2}+\mathbf{b}^{2}+\mathbf{c}^{2}$.
\#Chalaki

$$
\left.\begin{array}{rl}
& \left(1+a^{2}+b^{2}+c^{2}\right) \mid \\
= & 1+a^{2}+b^{2}+c^{2} \\
b^{2} & 0 \\
1 & 0 \\
1
\end{array} \right\rvert\,
$$

2

Which of the following values of α satisfy the equation

(JEE Adv. 2015)

$$
R_{2} \rightarrow R_{2}-R_{1}
$$

A. -4

$$
R_{3} \rightarrow R_{3}-R_{2}
$$

8. 9
c. -9
D. 4

$$
\left\{\begin{array}{l}
(1+\alpha)^{2} \\
2 \alpha+3 \\
2 \alpha+5 \\
R_{3} \rightarrow R_{3}-R_{2}
\end{array}\right.
$$

$$
\left.\begin{array}{ll}
(1+2 \alpha)^{2} & (1+3 \alpha)^{2} \\
4 \alpha+3 & 6 \alpha+3 \\
4 \alpha+5 & 6 \alpha+5
\end{array} \right\rvert\,=-648 \alpha
$$

$$
\begin{aligned}
& 2\left|\begin{array}{ccc}
\frac{(1+\alpha)^{2}}{2 \alpha+3} & \frac{(1+2 \alpha)^{2}}{1} & \frac{4 \alpha+3}{1}
\end{array} \frac{(1+3 \alpha)^{2}}{6 \alpha+3}\right|=-648 \alpha
\end{aligned}
$$

$$
\begin{aligned}
& x\left(+4 \alpha^{3}\right)=+648 \alpha
\end{aligned}
$$

2

$$
a^{2}+b^{2}+c^{2}+2=0
$$

$$
\text { If } \frac{a^{2}+b^{2}+c^{2}=-2}{} \text { and }(x)=\left|\begin{array}{ll}
\frac{1+\left(a^{2}\right) x}{\left(1+a^{2}\right) x} & \frac{\left(1+b^{2}\right) x}{1+b^{2} x} \\
\left(1+a^{2}\right) x & \left(1+c^{2}\right) x \\
\left(1+b^{2}\right) x \\
\left(1+b^{2}\right) x & 1+c^{2} x
\end{array}\right|
$$

(JEE Adv. 2005)
Hint then $\mathrm{f}(\mathrm{x})$ is a polynomial degree
A. 1
$C_{1} \rightarrow C_{1}+C_{2}+C_{3}$
B. 0
C. 3

$$
\left.\begin{array}{lll}
1+\left(a^{2}+b^{2}+c^{2}+2\right) x & - & - \\
1+\left(a^{2}+b^{2} /+c^{2}+2\right) x & - & - \\
1+\left(a^{2}+b^{2} /+c^{2}+2\right) x & - & -
\end{array}\right]
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
f(x)=\left|\begin{array}{ccc}
1 & \frac{\left(1+b^{2}\right) x}{1+b^{2} x} & \frac{\left(1+c^{2}\right) x}{\left(1+c^{2}\right) x} \\
1 & \frac{\left.1+b^{2}\right) x}{\left(1+b^{2}\right) x} & \frac{1+c^{2} x}{\left(1+c^{2}\right) x}
\end{array}\right| \\
f(x)=\left\lvert\, \begin{array}{ll}
4 & R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1} \\
0 & 1-x \\
0 & 0
\end{array} 1-1-x\right.
\end{array} \right\rvert\, \\
& f(x)=(1-x)^{2}=1-2 x+x^{2}
\end{aligned}
$$

2

Find values of

$$
\begin{aligned}
& \zeta\left|\begin{array}{ccc}
\frac{\sin \theta}{\sin \left(\theta+\frac{2 \pi}{3}\right)} & \cos \theta & \sin 2 \theta \\
R_{3} \longrightarrow R_{3}+R_{2} & \frac{\cos \left(\theta+\frac{2 \pi}{3}\right)}{\sin \left(\theta-\frac{2 \pi}{3}\right)} & \frac{\sin \left(2 \theta+\frac{4 \pi}{3}\right)}{\cos \left(\theta-\frac{2 \pi}{3}\right)}
\end{array}\right| \\
& \left|\begin{array}{lll}
\begin{array}{lll}
\sin \theta & \cos \theta & \sin 2 \theta \\
\sin \left(\theta+\frac{2 \pi}{3}\right) & - & - \\
2 \sin \theta\left(\frac{-1}{2}\right) & R \cos \theta\left(\frac{-1}{2}\right) & x \sin 2 \theta\left(\frac{-1}{2}\right)
\end{array}
\end{array}\right|=0 \\
& \text { (2000-3 marks) }
\end{aligned}
$$

$$
\begin{aligned}
& \cos \frac{2 \pi}{3}=\cos \left(\pi-\frac{\pi}{3}\right)=-\cos \frac{\pi}{3}=\frac{-1}{2} \\
& \cos \left(\frac{4 \pi}{3}\right)=\cos \left(\pi+\frac{\pi}{3}\right)=-\frac{1}{2}
\end{aligned}
$$

System Linear Equations

1 Determinant Method (Cramer's Rule)

2 Matrix Method (Gauss- Jordan Method)

Cramer's Rule

Cramer's Rule

\rightarrow Const \rightarrow Right side

$$
\begin{aligned}
& {\left[\begin{array}{l}
a_{1} x+b_{1} y+c_{1} z=d_{1} \\
a_{2} x+b_{2} y+c_{2} z=d_{2} \\
a_{3} x+b_{3} y+c_{3} z
\end{array}\right\} \text { system of J.E. }} \\
& a_{3} x+b_{3} y+c_{3} z=d_{3} \\
& x=\frac{D_{1}}{D} \\
& y=\frac{D_{2}}{D} \\
& Z=\frac{D_{3}}{D} \\
& D=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right| \\
& N_{0}=0 \\
& D_{1}=\left|\begin{array}{lll}
d_{1} & b_{1} & c_{1} \\
d_{2} & b_{2} & c_{2} \\
d_{3} & b_{3} & c_{3}
\end{array}\right| \\
& D_{2}=\left|\begin{array}{lll}
a_{1} & d_{1} & c_{1} \\
a_{2} & d_{2} & c_{2} \\
a_{3} & d_{3} & c_{3}
\end{array}\right| \\
& D_{3}=\left|\begin{array}{lll}
a_{2} & b_{2} & d_{2} \\
a_{3} & b_{3} & d_{3}
\end{array}\right|
\end{aligned}
$$

Important terms
i. Consistent: solution exists (unique or infinite solution)
ii. Inconsistent: solution does not exist (No solution)
iii. Homogeneous equations: constant terms are zero
iv. Trivial solution: all variables $=$ zero ie., $x=0, y=0, z=0$.

$$
\begin{aligned}
& x=0 \quad y=0 \quad z=0 \\
& \text { all Var }=0
\end{aligned}
$$

Homogeneous Linear Equations

$$
\begin{aligned}
& {\left[\begin{array}{l}
a_{1} x+b_{1} y+c_{1} z=0 \\
a_{2} x+b_{2} y+c_{2} z= \\
a_{3} x+b_{3} y+c_{3} z=0
\end{array}\right] \quad \text { Homo Linear }} \\
& D_{1}=D_{2}=D_{3}=0 \\
& D=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{2} & b_{3} & c_{3}
\end{array}\right| \quad D_{1}=0=D_{2}=D_{3} \\
& D_{1}=\left|\begin{array}{lll}
0 & - & - \\
0 & - & D=0 \\
0 & -
\end{array}\right|=0
\end{aligned} \quad D_{2}=\left|\begin{array}{c}
0 \\
0 \\
0
\end{array}\right|=0 \quad D_{2}=\left|\begin{array}{l}
0 \\
0 \\
0
\end{array}\right|=0
$$

Homogeneous Linear Equations

Gauss-Jordan Method

Matrix Method (Gauss-Jordan Method)

$$
\begin{aligned}
& x+y+z=6 \checkmark \\
& x=\frac{D_{1}}{D} \quad y=\frac{D_{2}}{D} \quad z=\frac{D_{3}}{D} \\
& x-y+z=2 \checkmark \\
& 2 x+y-z=1 \\
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 1 \\
2 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
6 \\
2 \\
1
\end{array}\right]} \\
& A X=B \\
& A^{-1} A X=A^{-1} B \\
& X=A^{-1} \cdot B \\
& X=\frac{(\operatorname{adj} A) \cdot B}{|A|} \\
& |A| \neq 0 \quad|A|=0 \\
& \text { \# Unique }
\end{aligned}
$$

Matrix Method (Gauss-Jordan Method)

Questions

For what values of p and q the system of equations has

$$
\begin{aligned}
& 2 x+p y+6 z=8 \\
& x+2 y+q z=5 \\
& x+y+3 z=4
\end{aligned}
$$

i. Unique solution
ii. No solution
iii. Infinite solutions
i) $\frac{\text { Unique Sol }}{D \neq 0}$

$$
\begin{aligned}
& (p-2)(q-3) \neq 0 \\
& p \neq 2 \text { and } q \neq 3
\end{aligned}
$$

ii) No Sol ${ }^{n} D=0 \quad\left(D_{1}, D_{2}, D_{3}\right)$ Ki $\neq 0$

$$
\begin{aligned}
& D=\left|\begin{array}{lll}
2 & p & 6 \\
1 & 2 & q \\
1 & 1 & 3
\end{array}\right|=(p-2)(q-3) \\
& D_{1}=\left|\begin{array}{lll}
8 & p & 6 \\
5 & 2 & q \\
4 & 1 & 3
\end{array}\right|=(p-2)(4 q-15)
\end{aligned}
$$

$$
p \neq 2 \quad q=3
$$

iii) ∞ Sol ${ }^{n} \quad D=D_{1}=D_{2}=D_{3}=0$

$$
D_{2}=\left|\begin{array}{lll}
2 & 8 & 6 \\
1 & 5 & q \\
1 & 4 & 3
\end{array}\right|=0
$$

$$
p=2 ; q \in R
$$

$$
D_{3}=\left|\begin{array}{lll}
2 & P & 8 \\
1 & 2 & 5 \\
1 & 1 & 4
\end{array}\right|=(p-2)
$$

The system of equations

$$
\begin{aligned}
& k x+y+z=1 \\
& x+k y+z=k \\
& x+y+z k=k^{2}
\end{aligned}
$$

$$
D=0
$$

17th March 2021, Shift 1
has no solution, if k is equal to -

Let the system of linear equations

$$
\begin{array}{lr}
4 x+\lambda y+2 z=0 \\
2 x-y+z=0 \\
\mu x+2 y+3 k=0, \lambda, \mu \in R & \text { Homo }+ \text { Non-trivial } \\
& D=0
\end{array}
$$

has non-trivial solution, then which of the following is true?

$$
D=\left|\begin{array}{ccc}
4 & \lambda & 2 \\
2 & -1 & 1 \\
\mu & 2 & 3
\end{array}\right|=\underline{(\lambda+2)(\mu-6)}
$$

A. $\mu=6, \lambda \in \mathrm{R}$
B. $\lambda=2, \mu \in \mathrm{R}$
C. $\lambda=3, \mu \in \mathrm{R}$
D. $\mu=-6, \lambda \in \mathrm{R}$

For the system of linear equations

$$
\begin{aligned}
& x-2 y=1 \\
& x-y+k z=-2 \\
& k y+4 z=6, k \in R
\end{aligned}
$$

Consjder the following statements:

1. The system has unique solution if $k \neq 2, k \neq-2$
2. The system has unique solution if $k=-2$
K. The system has unique solution if $k=2$
3. The system has no solution if $k=2$
4. The system has infinite number of solutions if $k \notin-2$

Which of the following statements are correct?

$2 \& 5$ only

$$
k=-2 \longrightarrow \infty \delta \partial / h
$$

$3 \& 4$ only
$1 \& 4$ only
这 $1 \& 5$ only

$$
\begin{aligned}
& D=\left|\begin{array}{ccc}
1 & -2 & 0 \\
1 & -1 & k \\
0 & k & 4
\end{array}\right|=(2-k)(2+k) \\
& D_{1}=\left|\begin{array}{ccc}
1 & -2 & 0 \\
-2 & -1 & k \\
6 & k & 4
\end{array}\right|=-(k+2)(k+10) \\
& \begin{array}{ll}
\text { if } k=2 \\
& D=0 \\
D_{2} & =\left|\begin{array}{ccc}
1 & 1 & 0 \\
1 & -2 & k \\
0 & 6 & 4
\end{array}\right|=-6(k+2)
\end{array} \\
& D_{3}=\left|\begin{array}{ccc}
1 & -2 & 1 \\
1 & -1 & -2 \\
0 & k & 6
\end{array}\right|=3(k+2)
\end{aligned} \begin{aligned}
& \text { uhique Soln } \\
& \text { Dキ0 } \\
& k \neq 2,-2
\end{aligned}
$$

If the system of equations

$$
\begin{aligned}
& k x+y+2 z=1 \\
& 3 x-y-2 z=2 \\
& -2 x-2 y-4 z=3
\end{aligned}
$$

has infinitely many solutions, then k is equal to -

$$
\left.\begin{array}{ll}
D & =\left|\begin{array}{ccc}
k & 1 & 2 \\
3 & -1 & -2 \\
-2 & -2 & -4
\end{array}\right|=0 \\
D_{1} & =\left|\begin{array}{ccc}
1 & 1 & 2 \\
2 & -1 & -2 \\
3 & -2 & -4
\end{array}\right|=0 \\
D_{2} & =\left|\begin{array}{ccc}
k & 1 & 2 \\
3 & 2 & -2 \\
-2 & 3 & -4
\end{array}\right|=-2(k-21) \\
D_{3} & =\left|\begin{array}{ccc}
k & 1 & 1 \\
3 & -1 & 2 \\
-2 & -2 & 3
\end{array}\right|=(k-21)
\end{array}\right) \left.\quad \begin{aligned}
& \text { 25th February 2021, Shift 1 } \\
&
\end{aligned} \right\rvert\, \begin{aligned}
& \text { (} k=2 \mid
\end{aligned}
$$

The following system of linear equations

$$
2 x+3 y+2 z=9
$$

$$
3 x+2 y+2 z=9
$$

$$
x-y+4 z=8
$$

does not have any solution
B. has a unique solution
5. has a solution (α, β, γ) satisfying $\alpha+\beta^{2}+\gamma^{3}=12 \quad 0+1^{2}+2^{3} \neq 12$
D. has infinitely many solutions

$$
\left.\begin{array}{ll}
D=\left|\begin{array}{lll}
2 & 3 & 2 \\
3 & 2 & 2 \\
1 & -1 & 4
\end{array}\right|=-20 & \begin{array}{c}
D \neq 0 \\
\text { unique }
\end{array} \\
D_{1}=\left|\begin{array}{ccc}
9 & 3 & 2 \\
9 & 2 & 2 \\
8 & -1 & 4
\end{array}\right|=0 & x=\frac{D_{1}}{D}=0 \\
D_{2} & =\left|\begin{array}{lll}
2 & 9 & 2 \\
3 & 9 & 2 \\
1 & 8 & 4
\end{array}\right|=-20 \\
D_{3} & =\frac{D_{2}}{D}=1 \\
D_{3} & 3
\end{array} \right\rvert\,
$$

If the following system of linear equations

$$
2 x+y+z=5
$$

$$
x-y+z=3
$$

$$
x+y+a z=b
$$

has no solution, then :

$D=0 \quad D_{1}, D_{2}, D_{3} \neq 0$
$D=\left|\begin{array}{ccc}2 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & a\end{array}\right|=\underline{1-3 a}$
$D_{3}=\left|\begin{array}{ccc}2 & 1 & 5 \\ 1 & -1 & 3 \\ 1 & 1 & b\end{array}\right|=7-3 b$
$a=-\frac{1}{3}, b \neq \frac{7}{3}$
$a \neq \frac{1}{3}, b=\frac{7}{3}$
$\therefore a \neq-\frac{1}{3}, b=\frac{7}{3}$
D. $a=\frac{1}{3}, b \neq \frac{7}{3}$

31 Aug 2021, Shift 1

$$
a=\frac{1}{3} \quad b \neq \frac{7}{3}
$$

$$
D=0 \quad D_{3} \neq 0
$$

No Sol

The value of a and b, for which the system of equations
$2 x+3 y+6 z=8$
$x+2 y+a z=5$
$3 x+5 y+9 z=b$
has no solution, are :

D	$=0$
A. a	$=3, b \neq 13$

B. $a \neq 3, b \neq 13$

$$
D=\left|\begin{array}{lll}
2 & 3 & 6 \\
1 & 2 & a \\
3 & 5 & 9
\end{array}\right|=3-a=0
$$

C. $a \neq 3, b=3$

$$
D_{3}=\left|\begin{array}{lll}
2 & 3 & 8 \\
1 & 2 & 5 \\
3 & 5 & b
\end{array}\right|=b-13 \neq 0
$$

D. $a=3, b=13$

The value of λ and μ such that the system of equations $x+y+z=6$, $3 x+5 y+5 z=26, x+2 y+\lambda z=\mu$ has no solutions, are :
A. $\lambda=3, \mu=5$

22 July 2021, shift 1
B. $\lambda=3, \mu \neq 10$

$$
D=\left|\begin{array}{lll}
1 & 1 & 1 \\
3 & 5 & 5 \\
1 & 2 & \lambda
\end{array}\right|=2 \lambda-4
$$

D. $\lambda=2, \mu \neq 10$

$$
D=0
$$

$$
\lambda=2
$$

The value of $k \in R$, for which the following system of linear equations

$$
\begin{array}{ll}
3 x-y+4 z=3 & \\
x+2 y-3 z=-2 & \text { 20 July 2021, shift } 2 \\
6 x+5 y+k z=-3
\end{array}
$$

Has infinitely many solutions is:
A. $3 \quad D=D_{1}=D_{2}=D_{3}=0$

$$
\text { D. }-3
$$

$$
D=\left|\begin{array}{ccc}
3 & -1 & 4 \\
1 & 2 & -3 \\
6 & 5 & k
\end{array}\right|=7 k+35=0
$$

Cramer's Rule (JEE Main 2022)

If the system of equations
$x+y+z=6$
$2 x+5 y+\alpha z=\beta$
$x+2 y+3 z=14$
JEE Main 2022
Has infinitely many solutions, then $\alpha+\beta$ is equal to:

A. 8 B. 36 B. 44 D. 48 $D_{3}=\left\|\begin{array}{lll}1 & 1 & 1 \\ 2 & 5 & \alpha \\ 1 & 2 & 3\end{array}\right\|=8-\alpha=0$ $\alpha=8$ 1 5 β 1 2 14$\|=36-\beta=0$	$+\beta=36$	

The number of values of α for which the system of equations:

$$
\begin{aligned}
& x+y+z=\alpha \\
& \alpha x+2 \alpha y+3 z=-1 \\
& x+3 \alpha y+5 z=4
\end{aligned}
$$

Is inconsistent, is

C. 2
D. $3\left|\begin{array}{ccc}\alpha & 1 & 1 \\ -1 & 2 \alpha & 3 \\ 4 & 3 \alpha & 5\end{array}\right|=\alpha^{2}-11 \alpha+7 \neq 0$

Let the system of linear equations

$$
\left\{\begin{array}{l}
x+y+\alpha z=2 \\
3 x+y+z=4 \\
x+2 z=1
\end{array}\right.
$$

have a unique solution (x^{*}, y^{*}, z^{*}). If (α, x^{*}), $\left(y^{*}, \alpha\right)$ and ($x^{*},-y^{*}$) are collinear points, then thesumof absolute values of all possible values of α is:
A. $4 \quad|1|+|-1|$
B. $3 \Rightarrow 2$
e. 2
D. 1
$\underbrace{(\alpha, 1),(1, \alpha) \text { and }(1,-1)}$
JEE Main 2022

Collinear

$$
\left|\begin{array}{ccc}
\alpha & 1 & 1 \\
1 & \alpha & 1 \\
1 & -1 & 1
\end{array}\right|=0 \quad \begin{gathered}
\alpha(\alpha+1)-1(0)+1(-1-\alpha)=0 \\
\alpha^{2}+\alpha-1-\alpha=0 \\
\alpha= \pm 1
\end{gathered}
$$

$$
\begin{aligned}
& \Delta=\left|\begin{array}{lll}
1 & 1 & \alpha \\
3 & 1 & 1 \\
1 & 0 & 2
\end{array}\right|=-(\alpha+3) \\
& \Delta_{1}=\left|\begin{array}{lll}
2 & 1 & \alpha \\
4 & 1 & 1 \\
1 & 0 & 2
\end{array}\right|=-(3+\alpha) \\
& \Delta_{2}=\left|\begin{array}{lll}
1 & 2 & \alpha \\
3 & 4 & 1 \\
1 & 1 & 2
\end{array}\right|=-(\alpha+3) \\
& \Delta_{3}=\left|\begin{array}{lll}
1 & 1 & 2 \\
3 & 1 & 4 \\
1 & 0 & 1
\end{array}\right|=0
\end{aligned}
$$

The ordered pair (a, b), for which the system of linear equations
$3 x-2 y+z=b$
$5 x-8 y+9 z=3$
$2 x+y+a z=-1$
Has no solution, is :
$\left.\begin{array}{l}\text { A. }\left(3, \frac{1}{3}\right) \\ \text { B. }\left(-3, \frac{1}{3}\right) \\ D\end{array}\right) \left\lvert\, \begin{array}{ccc}3 & -2 \\ 5 & -8 \\ 2 & 1\end{array}\left(\left.\begin{array}{l}1 \\ 9 \\ a\end{array} \right\rvert\,=-14(a+3)=0\right.\right.$

c. $\left(-3,-\frac{1}{3}\right)$
D. $\left(3,-\frac{1}{3}\right)^{D_{3}=}\left|\begin{array}{ccc}3 & -8 \\ 5 & \left(\begin{array}{c}b \\ 2\end{array}\right. & 1\end{array}\right|=7(3 b-1) \neq 0$

If the system of equations $\alpha x+y+z=5, x+2 y+3 z=4, x+3 y+5 z=\underline{\beta}$, has infinitely many solutions, then the ordered pair (α, β) is equal to:

JEE Main 2022
A. $(1,-3)$
B. $(-1,3) \quad D=\left|\begin{array}{lll}\alpha \\ 1 & 1 & 1 \\ 2 & 3 \\ 3 & 5\end{array}\right|=\alpha-1=0$
\&. $(1,3)$

$$
D=D_{1}=D_{2}=D_{3}=0
$$

D. $(-1,-3)$

$$
D_{1}=\left|\begin{array}{lll}
5 & 1 & 1 \\
4 & 2 & 3 \\
\beta & 3 & 5
\end{array}\right|=\beta-3=0
$$

Let the system of linear equations $\mathrm{x}+2 \mathrm{y}+\mathrm{z}=2, \alpha \mathrm{x}+3 \mathrm{y}-\mathrm{z}=\alpha,-\alpha \mathrm{x}+\mathrm{y}$
$+2 z=-\alpha$ be inconsistent. Then \propto is equal to :
JEE Main 2022

If the system of linear equations

$$
2 x+y-z=7
$$

$$
x-3 y+2 z=1
$$

$$
x+4 y+\delta z=k, \text { where } \delta, k \in R
$$

has infinitely many solutions, then $\delta+\mathrm{k}$ is equal to :
JEE Main 2022
$\begin{array}{ll}\text { A. } & -3 \\ \text { 8. } 3 & D=\left|\begin{array}{ccc}2 & 1 & -1 \\ 1 & -3 & 2 \\ 1 & 4 & \delta\end{array}\right|=-7(\delta+3)=0\end{array}$
$\begin{array}{lll}\text { C. } 6 & \delta=-3 \\ \text { D. } 9 & D_{3}=\left|\begin{array}{ccc}2 & 1 & 7 \\ 1 & -3 & 1 \\ 1 & 4 & k\end{array}\right|=-7(k-6)=0 & \frac{K=6}{\delta+K=3}\end{array}$

Let p, q, r be nonzero real numbers that are, respectively, the $10^{t h}, 100^{t h}$ and $1000^{\text {th }}$ terms of a harmonic progression. Consider the system of linear equations

$$
\frac{1}{p}, \frac{1}{q}, \frac{1}{r} \rightarrow A p . \quad \begin{gathered}
\quad x+y+z=1 \\
\frac{10 x+100 y+1000 z=0}{q r x+p r y+p q z=0}
\end{gathered} .
$$

$$
\begin{aligned}
& \frac{1}{p}=A+9 D \\
& \frac{1}{q}=A+99 D
\end{aligned}
$$

$$
\text { JEE Adv. } 2022
$$

$$
\frac{1}{r}=A+999 D
$$

List-I

(I) If $\frac{q}{r}=10$, then the system of linear equations has

List-II

(P) $x=0, y=\frac{10}{9}, z=-\frac{1}{9}$ as a solution

$$
\frac{p}{q}=\frac{A+99 D}{A+9 D}
$$

(Q) $x=\frac{10}{9}, y=-\frac{1}{9}, z=0$ as a solution
(R) infinitely many solutions equations has (IV) If $\left(\frac{p}{q}\right)=10$, then the system of line equations has

The correct option is:

$$
\left[\begin{array}{l}
(\mathrm{A})(\mathrm{I}) \rightarrow(\mathrm{T}) ;(\mathrm{II}) \rightarrow(\mathrm{R}) ;(\mathrm{III}) \rightarrow(\mathrm{S}) ;(\mathrm{IV}) \rightarrow(\mathrm{T}) \\
\text { (X) }(\mathrm{I}) \rightarrow(\mathrm{Q}) ;(\mathrm{II}) \rightarrow(\mathrm{S}) ;(\mathrm{III}) \rightarrow(\mathrm{S}) ; ~(\mathrm{IV}) \rightarrow(\mathrm{R}) \\
\text { (II) } \rightarrow(\mathrm{R}) ;(\mathrm{III}) \rightarrow(\mathrm{P}) ;(\mathrm{IV}) \rightarrow(\mathrm{R}) \\
\text { (L) }(\mathrm{I}) \rightarrow(\mathrm{T}) ;(\mathrm{II}) \rightarrow(\mathrm{S}) ;(\mathrm{III}) \rightarrow(\mathrm{P}) ;(\mathrm{IV}) \rightarrow(\mathrm{T})
\end{array}\right.
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
x+y+z=1 \\
10 x+100 y+1000 z=0 \\
\frac{x}{p}+\frac{y}{q}+\frac{z}{r}=0
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& D_{1}=\left|\begin{array}{lll}
1 & 1 & 1 \\
0 & 100 & 1000 \\
0 & A+991 & A+999 D
\end{array}\right|=900(D-A) \\
& D_{2}=\left|\begin{array}{ccc}
1 & 1 & 1 \\
10 & 0 & 1000 \\
A+9 D & \text { o } & A+9990
\end{array}\right|=990(D-A)
\end{aligned}
$$

$$
\left.\begin{array}{l}
D=0 \\
D_{1}=900(D-A) \\
D_{2}=990(D-A) \\
P_{3}=90(D-A)
\end{array}\right] \begin{array}{ll}
\frac{\infty \text { Soln }}{D=A} & \begin{array}{l}
\text { No Soln } \\
D \neq A
\end{array} \\
\end{array}
$$

(1)

$$
\begin{aligned}
\frac{A+99 D}{A+9 D} & \neq 10 \\
A+99 D & \neq 10 A+90 D \\
9 D & \neq 9 A \\
D & \neq A
\end{aligned}
$$

(iv) $D=A$
2
2

Question Stem

Let α, β and γ be real numbers such that the system of linear equations

$$
\begin{gathered}
x+2 y+3 z=\alpha \\
4 x+5 y+6 z=\beta \\
7 x+8 y+9 z=\gamma-1
\end{gathered}
$$

is consistent. Let $|M|$ represent the determinant of the matrix

SD

$$
M=\left[\begin{array}{ccc}
\alpha & 2 & \gamma \\
\beta & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& D=0 \\
& D_{1}=D_{2}=D_{3}=0
\end{aligned}
$$

Let $(P$ be the plane containing all those (α, β, γ) for which the above system of linear equations is consistent, and (D) be the square of the distance of the point $(0,1,0)$ from the plane P.
Q. 7 The value of $|\mathrm{M}|$ is 1 .

$$
|M|=\alpha(1)-\beta(2)-1(-\gamma)
$$

Q. 8 The value of D is 1.5

$$
=\alpha-2 \beta+\gamma=1
$$

$$
D_{1}=\left|\begin{array}{ccc}
1 & 2 & 3 \\
\gamma-1 & 5 & 6 \\
\gamma
\end{array}\right|=0 \quad(0,1,0)
$$

$$
\alpha-2 \beta+\gamma=1
$$

2

How to Differentiate a Determinant?

Differentiation of Determinants

$$
\begin{aligned}
& F(x)=\left|\begin{array}{ccc}
f_{1}(x) & f_{2}(x) & f_{3}(x) \\
g_{1}(x) & g_{2}(x) & g_{3}(x) \\
h_{1}(x) & h_{2}(x) & h_{3}(x)
\end{array}\right| \\
& F^{\prime}(x)=\left|\begin{array}{lll}
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & f_{3}^{\prime}(x) \\
g_{1}(x) & g_{2}(x) & g_{3}(x) \\
h_{1}(x) & h_{2}(x) & h_{3}(x)
\end{array}\right|+\left|\begin{array}{cc}
- & - \\
g^{\prime}(x) & g_{2}^{\prime}(x) \\
- & g_{3}^{\prime}(x) \\
- & -
\end{array}\right|+\left|\begin{array}{ll}
- & - \\
- & - \\
h_{1}^{\prime}(x) & h_{2}^{\prime}(x)
\end{array} h_{3}(a)\right|
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } f(x)=\left|\begin{array}{lll}
x+a^{2} & a b & a c \\
a b & x+b^{2} & b c \\
a c & b c & x+c^{2}
\end{array}\right| \\
& f^{\prime}(x)=\left|\begin{array}{ccc}
1 & 0 & 0 \\
a b & x+b^{2} & b c \\
a c & b c & x+c^{2}
\end{array}\right|+\left|\begin{array}{ccc}
x+a^{2} & a b & a c \\
0 & 1 & 0 \\
a c & b c & x+c^{2}
\end{array}\right|+\left|\begin{array}{ccc}
x+a^{2} & a b & a c \\
a b & x+b^{2} & b c \\
0 & 0 & 1
\end{array}\right|
\end{aligned}
$$

$I f a x^{4}+b x^{3}+c x^{2}+d x+e=\left|\begin{array}{ccc}2 x & x-1 & x+1 \\ \mathbf{x}+1 & x^{2}-x & x-1 \\ x-1 & x+1 & 3 x\end{array}\right|$ then the value of e, is
A. 0 $x=0$ bath side
B. -2
C. 3

$$
e=\left|\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right|
$$

D. 2

then the value of d, is

$$
\begin{gathered}
4 a x^{2}+3 b x^{2}+2 c x x+d=\left|\begin{array}{ccc}
2 & 1 & 1 \\
x+1 & x^{2}-x & x-1 \\
x-1 & x+1 & 3 x
\end{array}\right|+\left|\begin{array}{ccc}
- & - & - \\
1 & 2 x-1 & 1 \\
- & - & -
\end{array}\right|+\left|\begin{array}{ccc}
- & - & - \\
- & - & - \\
1 & 1 & 3
\end{array}\right| \\
x=0 \\
d=|+|+|
\end{gathered}
$$

2

Cayley - Hamilton Theorem

E Every square matrix satisfies a specific polynomial equation known as characteristic equation.

$$
\begin{aligned}
& P(\lambda)=|A-\lambda I| \\
& P(A)=0
\end{aligned}
$$

$A \rightarrow$ any Sq. matrix

Every Sq. matrix will satisfy in its Char. Eqn.

Using Cayley Hamilton theorem, find A^{-1} and A^{4}

$$
\begin{array}{ll}
A= & {\left[\begin{array}{ccc}
\frac{1}{2} & 2 & 0 \\
0 & \frac{1}{0} & 0 \\
0
\end{array}\right]} \\
\begin{array}{lll}
A-\lambda I \mid=0 & & (1-\lambda)\left(-1+\lambda^{2}\right)-4+4 \lambda=0 \\
& \left|\begin{array}{ccc}
1-\lambda & 2 & 0 \\
2 & -1-\lambda & 0 \\
0 & 0 & 1-\lambda
\end{array}\right|=0 & -1+\lambda^{2}+\lambda-\lambda^{3}-4+4 \lambda=0 \\
& (1-\lambda) \mid(-1-\lambda)(1-\lambda)\}-2(2-2 \lambda)=0 \quad & \lambda^{3}-\lambda^{2}-5 \lambda+5=0 \\
& (1-\lambda)\left(-1-\lambda+\lambda+\lambda^{2}\right)-4+4 \lambda=0
\end{array}
\end{array}
$$

$$
\begin{array}{rlrl}
C H:-A^{3}-A^{2}-5 A+5 I=0 & & A^{3}=A^{2}+5 A-5 I \\
& & A^{4} & =A \cdot A^{3} \\
<A^{5} A^{10} A^{20}-? & & =A\left(A^{2}+5 A-5 I\right) \\
A^{-1}=f(A) & & A^{3}+5 A^{2}-5 A \\
& =A^{2}+5 A-5 I+5 A^{2}-5 A \\
A^{4} & =6 A^{2}-5 I
\end{array}
$$

$A A A A^{-1}$

Let $A=\left(\begin{array}{cc}4 & -2 \\ \alpha & \beta\end{array}\right) \quad|A|=4 \beta+2 \alpha=18$
If $\mathrm{A}^{2}+\gamma \mathrm{A}+18 \mathrm{I}=\mathrm{O}$, then $\underline{\operatorname{det}(\mathrm{A})}$ is equal to
A. -18
8. 18

$$
\left|\begin{array}{c}
4-\lambda \\
\alpha
\end{array} \chi_{\beta-\lambda}^{-2}\right|=0
$$

JEE Main 2022
c. $-50(4-\lambda)(\beta-\lambda)+2 \alpha=0$

$$
\begin{aligned}
& -4-\beta=\gamma \\
& 2 \alpha+4 \beta=18
\end{aligned}
$$

D. 50

$$
\begin{aligned}
& 4 \beta-4 \lambda-\lambda \beta+\lambda^{2}+2 \alpha=0 \\
& \lambda^{2}+(-4-\beta) \lambda+(2 \alpha+4 \beta)=0 \\
(H: \quad & A^{2}+(-4-\beta) A+(2 \alpha+4 \beta) I=0 \\
& A^{2}+\gamma A+18 I=0
\end{aligned}
$$

2Let $A=\left(\begin{array}{cc}1 & 2 \\ -2 & -5\end{array}\right)$. Let $\alpha, \beta \in \mathbb{R}$ be such that $\alpha A^{2}+\beta A=2 I$. Then $\alpha+\beta$ is equal to -
A. $-10 \quad\left|\begin{array}{cc}1-\lambda & 2 \\ -2 & -5-\lambda\end{array}\right|=0$

JEE Main 2022
B. -6

$$
(1-\lambda)(-5-\lambda)+4=0
$$

$$
\left\{\begin{array}{l}
2 A^{2}+8 A=2 I \\
A^{2}+B A=2 I
\end{array}\right.
$$

C. 6
D. 10

$$
\begin{gathered}
\lambda^{2}+4 \lambda-1=0 \\
2\left(A^{2}+4 A-I=0\right.
\end{gathered}
$$

$$
\alpha+\beta=10
$$

$$
\begin{aligned}
& \left.A^{2}+4 A=I\right) A^{-1} \\
& A+4 I=A^{-1}
\end{aligned}
$$

Let $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right]$ If $\underline{A^{-1}=\alpha I+\beta A}, \alpha, \beta \in R, I$ is $\alpha 2 \times 2$ identity
matrix, then $4(\alpha-\beta)$ is equal to :

A.	5
B.	$8 / 3$
C.	2
D.	4

Join with us in Telegram

TELEGRAM CHANNEL Trigo

o t.me/unacademyatoms

COMPLETE NOTES AND LECTURES

To tinyurl.com/unacademyatoms

2 pm 1 Noo DPP Test

HINDI
Igneous Batch for JEE Advanced \& Olympiads 2021
Started on Jul 7
Nishant Vora and 1 more

hinol
Evolve Batch Course for Class 12th JEE Main and Advanced 2022
Starts on Apr 7
Anupam Gupta and 2 more

HINDI
Mega Batch Course for Class 12th JEE Main and Advanced 2022
Starts on Apr 6
Narendra Avasthi and 1 more

HINDI
Enthuse: Class 12th for JEE Main and Advanced 2022
Starts on Apr 14
Amarnath Anand and 2 more

HINDI
Final Rapid Revision Batch for JEE Main 2021
Starts on Apr 6
Manoj Chouhan and 2 more
 JEE Aspirants 2022: Part - 1 Lesson 1•Apr 2, 2021 12:30 PM
DC Pandey

If you want to be the BEST "Learn" from the BEST

Halliday / Resnick / Walker PHYSICS ror Jee (MAIN \& ADVANCED)

THOMA
For the Jee

Chank ofou!
 + SUBSCRIBE

PDF
\checkmark Download Now !

