

Nishant Vora

B.Tech - IIT Patna

\square 7+ years Teaching experience

- Mentored 5 lac+ students
- Teaching Excellence Award

\# B ${ }^{\text {OunceBaokz.o }}$

Join with us in Telegram

TELEGRAM CHANNEL

- t.me/unacademyatoms

COMPLETE NOTES AND LECTURES

- tinyurl.com/unacademyatoms

¡ India's BEST Educators

Unacademy Subscription

Step closer to achieving your dreams by cracking your State CET

Pre-book today at ₹49 and get an assured $\mathbf{5 0 \%}$ discount on launch price!

Launching on November 1, 2022 NVLIVE

Counselling Festival 25 Oct-31 Oct Zoom $\rightarrow 11$ Am (FREE)

Interact with your Favourite Educator

Special Surprise!

For the learners who attend the session

Matrices

General Matrix

$$
\begin{gathered}
1 \\
1 \\
2 \\
2 \\
\vdots 3 \\
\vdots \\
m
\end{gathered}\left[\begin{array}{cccc}
1 & 2 & \cdots & n \\
\frac{a_{11}}{a_{21}} & \frac{a_{12}}{a_{22}} & \cdots & a_{1 n} \\
a_{31} & a_{23} & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{3 n}
\end{array}\right]_{m \times n}
$$

$$
\overbrace{2^{\text {nd }}}^{a_{\text {row }}} 3^{\text {rd }} \text { Column }
$$

Order of Matrix

The number of matrices of order 3×3, whose entries are either 0 or 1 and the sum of all the entries is a prime number, is _.

$$
\text { JEE Main } 2022
$$

$$
\begin{aligned}
& \text { O OR } 1 \\
& {\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
& q_{2}+{ }^{9} c_{3}+{ }^{9} c_{5}+{ }^{a_{7}} \\
& \Rightarrow 282
\end{aligned}
$$

Let A be a 3×3 matrix having entries from. The set $\{-1,0,1\}$. The number of all such matrices A having sum of all the entries equal to 5 . is

$$
\left[\begin{array}{lll}
- & - & - \\
- & - & - \\
- & - & -
\end{array}\right]
$$

$$
\begin{gathered}
\{-1,0,1\} \\
\text { Sum }=5 \\
\underline{c-1} 1,1,1,1,1,0,0,0,0 \Rightarrow \frac{9!}{5!4!} \\
\underline{c-2}[1,1,1,1,1,1,-1,0,0 \\
\underline{c-3} 1,1,1,1,1,1,1,-1,-1 \Rightarrow \frac{9!}{6!2!} \\
\\
\text { JEE Main } 2022 \\
\hline \frac{9!2!}{414}
\end{gathered}
$$

Special Types of Matrices

Row Matrix
OR Row Vector

$$
A=14 \quad 2 \quad 3 \quad 4]_{1 \times 4}
$$

Column Matrix OR (column Vector.

$$
B=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]_{n \times 1}
$$

Special Types of Matrices

Null Matrix or Zero Matrix

$$
\begin{aligned}
\rightarrow O & =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0
\end{array}\right]_{2 \times 2}\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]_{3 \times 2}
\end{aligned}
$$

Special Types of Matrices
Horizontal Matrix
row < Column $\quad\left[\begin{array}{ccc}2 & 3 & -1 \\ 1 & 0 & 2\end{array}\right]_{2 \times 3}$

Vertical Matrix
rows $>$ Column

Square Matrix
rows = Coluthon

Special Types of Matrices

Square Matrix
$A=\left[\begin{array}{lrr}9 & 5 & 2 \\ 1 & 8 \\ 3 & 1 & 5 \\ \times\end{array}\right]_{3 \times 3}$

$$
T_{v}(A)=9+8+6
$$

Square Matrices

In a square matrix the pair of elements $a_{i j} \& a_{j i}$ are called Conjugate Elements.

$$
a_{i j} \quad a_{j i}
$$

The elements $a_{11}, a_{22}, a_{33}, \ldots a_{n n}$ are called Diagonal Elements. The line along which the diagonal elements lie is called "Principal or leading" diagonal.

Trace (A) = Sum of elements along principal diagonal. Notation $\dagger_{r}(\mathbf{A})$.

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \quad t_{r}(A)=\text { sum of diagonal element }
$$

Types of Square Matrices
w

* If $T_{r}(A)=T_{r}(B)$ then the value of $\left(\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}\right)$ is
A. $1 \quad \underline{\alpha}^{2}+\beta^{2}+\gamma^{2}=2 \alpha+2 \beta+2 \gamma-1-1-1$
B. $2 \underline{\alpha^{2}-2 \alpha+1}+\underbrace{\beta^{2}-2 \beta+1}+\underbrace{\gamma^{2}-2 \gamma+1}=0$
C. 3
D. 4

$$
\begin{aligned}
& (\alpha-1)^{2}+(\beta-1)^{2}+(\gamma-1)^{2}=0 \\
& \alpha=\beta=\gamma=1
\end{aligned}
$$

2

- Algebra of Matrices

Algebra of Matrices

Adding/Subtracting two Matrices

We can add/subtract two matrices only if they are of same order

$$
\begin{aligned}
& \operatorname{tr}(A)=5 \\
& \frac{\operatorname{tr}(B)=0}{\operatorname{tr}(A+B)=5} \text { Given } \underbrace{A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]} \text { 202 } B=\left[\begin{array}{ll}
-1 & 3 \\
-2 & 1
\end{array}\right]_{2 \times 2} \text { Find } \mathbf{A}+\mathbf{B} \quad\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 3 & 6
\end{array}\right]+\left[\begin{array}{cc}
-1 & 0 \\
2 & 3
\end{array}\right] \\
& \begin{aligned}
A+B= & {\left[\begin{array}{ll}
(1) & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{cc}
-1 & 3 \\
-2 & 13
\end{array}\right]=\left[\begin{array}{cc}
0 & 5 \\
1 & 5
\end{array}\right] } \\
& {\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]-\left[\begin{array}{cc}
-1 & 3 \\
-2 & 1
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
5 & 3
\end{array}\right] }
\end{aligned}
\end{aligned}
$$

Order should be same

$$
\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}
$$

(Commutative)

$$
\operatorname{tr}(12 A)
$$

$$
(A+B)+C=A+(B+C) \quad \text { (Associative) }
$$

$=12 \operatorname{tr}(A)$
$=\checkmark$

$$
t_{r}(A+B)=t_{r}(A)+t_{r}(B)
$$

(Square Matrix)
$\$$

$$
t_{r}(A-B)=t_{r}(A)-t_{r}(B) \quad \text { (Square Matrix) }
$$

$\dagger_{r}(\mathrm{KA})=k \dagger_{r}(\mathrm{~A})$
(Square Matrix)

$$
\begin{align*}
& \operatorname{tr}(9 A)=9 \operatorname{tr}(A)=9 \times 4 \\
& \\
& A=\left[\begin{array}{lll}
3 & 5 & 3 \\
4 & 2 & 9 \\
7 & 3 & -1
\end{array}\right]
\end{align*}
$$

Multiplication of a matrix by a scalar :

$$
\begin{aligned}
& \text { If } A=\left[\begin{array}{ccc}
a & b & c \\
b & c & \mathbf{a} \\
\mathbf{c} & \mathbf{a} & b
\end{array}\right] ; \quad k A=\left[\begin{array}{lll}
k a & k b & k c \\
k b & k c & k a \\
k c & k a & k b
\end{array}\right] \\
& A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \\
& \operatorname{tr}(A)=5 \\
& \text { * } k(A+B)=k A+k B \\
& K(A+B)=K A+K B \\
& 3(A+B)=3 A+3 B V \\
& \operatorname{tr}(3 A)=154
\end{aligned}
$$

Additive Inverse :

$$
2+(?)=0
$$

If $\mathbf{A}+\mathbf{B}=\mathbf{O}=\mathbf{B}+\mathbf{A}$ (order of $\mathbf{A}=$ order of \mathbf{B}) Then A and B are additive inverse of each other

Multiplication of a matrices

* Kab?

AB exist if, $\mathrm{A}=\mathrm{m} \times \mathrm{n} \& B=\mathbf{n} \times \mathrm{p} \quad$ K ese?

Multiplication of a matrices (Row by Column) \qquad
Find $[\begin{array}{ll}{\left[\begin{array}{ll}2 & 4 \\ 1 & 5\end{array}\right]}\end{array} \underbrace{}_{2 \times 2} \cdot\left[\begin{array}{l}3 \\ 2\end{array}\right]\left[\begin{array}{l}5 \\ 1\end{array}\right]_{\frac{2 \times 2}{2}}^{\left[\begin{array}{ll}\frac{14}{13} & \frac{14}{10}\end{array}\right]_{2 \times 2}}$
\#NVSTYLE

Row \times Column

	$(3,2)$	$(5,1)$
$(2,4)$	$\left[\begin{array}{cc}6+8 & 10+4 \\ (1,5) & \\ 3+10 & 5+5\end{array}\right]$	

Multiplication of a matrices (Row by Column) \qquad
Find $\left[\begin{array}{ll}2 & 4 \\ \hline 1 & 5\end{array}\right]_{2 \times 2} \cdot\left[\begin{array}{l}3 \\ 2\end{array}\right]\left[\begin{array}{l}5 \\ 1\end{array}\right]_{2 \times 2}=$
$=\left[\begin{array}{ll}a_{11} & \frac{a_{12}}{a_{21}} \\ a_{22}\end{array}\right]_{2 \times 2}$
Method - 2

$$
\begin{aligned}
& x a_{11}=6+8=14 \\
& x a_{12}=10+4=14 \\
& a_{21}=3+10=13 \\
& \times a_{22}=5+5=10
\end{aligned}
$$

Multiplication of a matrices (Row by Column) \qquad

Properties of Matrix Multiplication
In general, matrix multiplication is not Commutative
ie. $\mathbf{A B} \neq B A$ (in general).

In fact if $A B$ is defined it is possible that $B A$ is not defined or may have different order.

Properties of Matrix Multiplication
(2) If $\underline{A=O}$ or $\underline{B=\mathbf{O}} \Rightarrow A B=\mathbf{O}$

$$
\begin{aligned}
& A \circ R B=0 \quad A B=0 \\
& A B=0 \Rightarrow A=0 \text { or } B=0
\end{aligned}
$$

If $A B=0 \nRightarrow A=0$ or $B=0$
E.g. $A=\left[\begin{array}{cc}0 & -1 \\ 0 & 2\end{array}\right] \quad B=\left[\begin{array}{ll}5 & 5 \\ 0 & 0\end{array}\right]$

$$
A B=\left[\begin{array}{ll}
\left.\begin{array}{ll}
0 & -1 \\
\hline 0 & 2
\end{array}\right]
\end{array}\right]\left[\begin{array}{l}
5 \\
0
\end{array}\right]\left[\begin{array}{ll}
5 \\
0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

$$
\left(\begin{array}{l}
(x+1)(x-2)=0 \\
x+1=0 x-2=0
\end{array}\right.
$$

Properties of Matrix Multiplication
(3)

If $A B=A C \nRightarrow B=C$

$$
A B=A C \nRightarrow B=C
$$

But if $B=C \Rightarrow A B=A C$

$$
A B \neq C A
$$

Properties of Matrix Multiplication
(4) $\left\{\begin{array}{l}\text { In case } A B=B A \\ A\end{array} \Rightarrow\right.$ and B commute each other
if $A B=-B A$ then A and B anticommute each other.
(Same order)
E.g. $A=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$ and $B=\left[\begin{array}{ll}\mathbf{c} & 0 \\ 0 & d\end{array}\right]$
[$A B=B A]$

$$
\begin{aligned}
& A B=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]\left[\begin{array}{ll}
c & 0 \\
0 & d
\end{array}\right]=\left[\begin{array}{cc}
\frac{a c}{} & 0 \\
0 & b d
\end{array}\right] \\
& B A=\left[\begin{array}{ll}
c & 0 \\
0 & d
\end{array}\right]\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]=\left[\begin{array}{cc}
a c & 0 \\
0 & b d
\end{array}\right]
\end{aligned}
$$

Properties of Matrix Multiplication
(5) Multiplication of diagonal matrices of the same order will be commutative \#NVstye

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{ccc}
\frac{-1}{0} & 0 & 0 \\
0 & 2 & 0 \\
0 & 4
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 12
\end{array}\right]=\operatorname{dia}(-1,4,12)
$$

Properties of Matrix Multiplication
If $A, B \& C$ are comfortable for the product $A B \& B C$, then (A.B). C = A. (Br)

Distributivity:

$$
\begin{aligned}
& A(B+C)=\underline{A B}+A C \\
&(A+B C \underline{A C}+B C \\
& C A
\end{aligned}
$$

Positive integral powers of a square matrix
$A^{2} A=(A A) A=A(A A)=A^{3}$
$\mathbf{I}^{\mathrm{m}}=\mathbf{I}$ for all $\mathbf{m} \in \mathbf{N}$
$\mathbf{A}^{\mathrm{m}} \cdot \mathbf{A}^{\mathrm{n}}=\mathbf{A}^{\mathrm{m}+\mathrm{n}}$ and $\left(\mathbf{A}^{\mathrm{m}}\right)^{\mathrm{n}}=\mathbf{A}^{\mathrm{mn}}$
$\mathbf{A}^{0}=\mathbf{I}_{\mathrm{n}}, \mathrm{n}$ being the order of A

$$
I=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& A^{3}=A A A=A^{2} A=A A^{2} \\
& I^{\text {any }}=I \quad I^{2023}=I
\end{aligned}
$$

$$
A^{5} \cdot A^{4}=A^{9} \quad\left(A^{2}\right)^{3}=A^{6}
$$

$\mathrm{AB}=\mathrm{B}$ and $a+\mathrm{d}=2021$ then the value of $\mathrm{a} \alpha^{\prime}-\mathrm{bc}$ is equal to 2020
\#NVstyle

$$
\begin{align*}
& \text { de } \begin{array}{l}
\left.\begin{array}{l}
d=0 \\
a=2021
\end{array}\right\} \\
\left.\begin{array}{ll}
2021 & 6 \\
\hline c & 0
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]_{2 \times 1}=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \\
{\left[\begin{array}{c}
2021 \alpha+6 \beta \\
c \alpha
\end{array}\right]=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]_{2 \times 1}}
\end{array}
\end{align*}
$$

$$
=\frac{-b c}{\Gamma}
$$

JEE Main 2021
$2021 \alpha+6 \beta=\alpha$

$$
b \beta=-2020 \alpha-(1)
$$

$$
c \alpha=\hat{\beta}
$$

$$
b(c q)=-2020 \psi
$$

$$
-b c=2020
$$

2The trace of a square matrix is defined to be the sum of its -diagonal entries. If A is a 2×2 matrix such that the trace of A is 3 and the trace of A^{3} is -18 , then the value of the determinant of A is

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
3 & a \\
b & 0
\end{array}\right]_{2 \times 2} \\
& \begin{array}{l}
\operatorname{tr}(A)=3 \\
\operatorname{tr}\left(A^{3}\right)=-18
\end{array} \\
& A^{3}=\left[\begin{array}{ll}
3 & a \\
b & 0
\end{array}\right] \cdot\left[\begin{array}{l}
3 \\
b
\end{array}\right]\left[\begin{array}{l}
a \\
0
\end{array}\right] \cdot\left[\begin{array}{ll}
3 & a \\
b & 0
\end{array}\right] \\
& \left.=\left[\begin{array}{ll}
\frac{a+a b}{} 3 a \\
3 b & a b
\end{array}\right]\left[\begin{array}{l}
3 \\
b
\end{array}\right] \begin{array}{l}
a \\
0
\end{array}\right] \\
& =\left[\begin{array}{cc}
3(9+a b)+3 a b & \\
& 3 a b
\end{array}\right] \\
& 3(9+a b)+3 a b+3 a b=-18 \\
& 27+9 a b=-18 \\
& \text { JEE Adv } 2020 \\
& 3+a b=-2 \\
& -a b=5 \\
& \operatorname{det}(A)=\left|\begin{array}{ll}
3 \\
b & X_{0}
\end{array}\right|=-a b=5
\end{aligned}
$$

2

Let M be a 3×3 matrix satisfying
(JEE adv 2011)

$$
\begin{aligned}
& {\left[\begin{array}{lll}
a a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
12
\end{array}\right]} \\
& \begin{array}{l}
a_{1}+a_{2}+a_{3}=0 X \\
b_{1}+b_{2}+b_{3}=0 X \\
c_{1}+c_{2}+c_{3}=12 \\
2+3+c_{3}=12 \\
c_{3}=7
\end{array}
\end{aligned}
$$

Transpose of Matrices

M
 M^{T} / M^{\prime}
]

$$
\left[\begin{array}{lll}
\mathbf{1} & \mathbf{2} & \mathbf{3} \\
\hline \mathbf{4} & \mathbf{5} & \mathbf{6} \\
\mathbf{7} & \mathbf{8} & \mathbf{9}
\end{array}\right]^{\mathbf{T}}=\left[\begin{array}{lll}
\hline 1 & 4 & 7 \\
\hline 2 & 5 & 8 \\
\hline 3 & 6 & 9
\end{array}\right]^{\top}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Properties of Transpose } \\
& (A+B)^{\prime}=A^{\prime}+\left(B^{\prime}\right) \\
& \left(\begin{array}{ll}
\left.\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{ll}
\frac{1}{-1} & 0
\end{array}\right]\right)^{\prime} \\
=\left[\begin{array}{ll}
\frac{2}{2} & 2
\end{array}\right]^{\prime} \\
=\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right]+\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right] \\
2 & 6
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 2 \\
2 & 6
\end{array}\right] \\
& (A B)^{\prime}=B^{\prime} A^{\prime} \\
& (A B C)^{\prime}=C^{\prime} B^{\prime} A^{\prime}
\end{aligned}
$$

$$
\operatorname{tr}(K A)=K \operatorname{tr}(A)
$$

$$
(K A)^{\prime}=K A^{\prime}
$$

1. $\left(A^{\top}\right)^{\top}=A$
2. $(A-B)^{\top}=A^{\top}-B^{\top}$
3. $(k A)^{\top}=k\left(A^{\top}\right)$
4. $(A B)^{T}=B^{T} A^{\top}$

$$
(A B C D)^{\prime}=D^{\prime} C^{\prime} B^{\prime} A^{\prime}
$$

If P is a 3×3 matrix such that $\mathbf{P}^{\mathbf{T}}=\mathbf{2 P + I}$, where $\mathbf{P}^{\boldsymbol{T}}$ is the transpose of P and I is the $\mathbf{3 \times 3}$ identity matrix, then there
exist a column matrix $X=\left[\begin{array}{l}\mathbf{x} \\ \mathbf{y} \\ \mathbf{z}\end{array}\right] \neq\left[\begin{array}{l}0 \\ \mathbf{0} \\ \mathbf{0}\end{array}\right]$ such that
A. $P X=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
B. $P X=Y$

$$
\left(P^{\top}\right)^{\top}=(2 P+I)^{\top} \text { JEE Adv } 2012
$$

C. $P X=2 X$

$$
I \cdot X=X
$$

b. $P X=-X$
$P+I=0$
$P X=I X$

$$
\begin{aligned}
& P=(2 P)^{\top}+I^{\top} \\
& P=2\left(P^{\top}\right)+I \\
& P=2(2 P+I)+I \\
& P=4 P+3 I \\
& O=3 P+3 I
\end{aligned}
$$

$$
P X=-X
$$

2

If for the matrix $A=\underbrace{\left[\begin{array}{cc}1 & -\alpha \\ \alpha & \beta\end{array}\right]}, \underbrace{\mathrm{AA}^{\top}=\mathrm{I}_{2}}$, then the value of $\alpha^{4}+\beta^{4}$ is:
A. 1
B. 3

C. 2
D. 4

$$
\begin{aligned}
& \alpha^{2}=0 \Rightarrow \alpha^{4}=0 \\
& \beta^{2}=1 \Rightarrow \beta^{\beta^{4}=1} \\
& \alpha^{4}+\beta^{4}=1
\end{aligned}
$$

2

Symmetric and Skew-Symmetric Matrix

$$
\begin{aligned}
& A^{\top}=A \\
& \text { If } \mathbf{A}^{\top}=\mathbf{A} \text {, then } \mathrm{A} \text { is symmetric } \\
& A^{\top}=-A \\
& A^{\top}=-A \\
& {\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]^{\top}=\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]} \\
& {\left[\begin{array}{ll}
0 & 1 \\
-1 & 9
\end{array}\right]^{\top}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]} \\
& \begin{array}{l}
\text { (a) c) } \left.\begin{array}{l}
\text { (b) } \\
\text { (d) } \\
a=-a \\
2 a=0 \\
2=-b=-d \\
a=0
\end{array} \right\rvert\, \begin{array}{l}
c=-b \\
a=0
\end{array}
\end{array}
\end{aligned}
$$

Visualize in \#NVStyle

(1)

(2)
$\left[\begin{array}{ccc}0 & 1 & -2 \\ -1 & 2 & -3 \\ 2 & -3 & 2\end{array}\right] \rightarrow$ skew Sym

Note: Diagonal elements of a Skew-symmetric = 0

For any square matrix A with real number entries, $A+A^{\prime}$ is a symmetric matrix and A - A^{\prime} is a skew symmetric matrix.

$$
\begin{aligned}
& A \rightarrow \begin{array}{l}
\text { any. } \\
\text { aq. } \\
\text { matrix }
\end{array} \\
& X=A+A^{\top} \\
& \begin{array}{l}
\text { * } \left.\begin{array}{l}
A+A^{\top} \rightarrow \text { Sym } \\
A-A^{\top} \rightarrow \text { Skew Sym }
\end{array} \begin{array}{l}
\frac{\text { Toprove }}{} \frac{X \text { is Sym. }}{X^{\top}=X} \\
\text { Proof: }: X^{\top}=\left(A+A^{\top}\right)^{\top}
\end{array}\right]
\end{array} \\
& Y=A-A^{\top} \\
& Y^{\top}=\left(A-A^{\top}\right)^{\top} \\
& =A^{\top}-\left(A^{\top}\right)^{\top} \\
& =A^{\top}-A \\
& =A^{\top}+\left(A^{\top}\right)^{\top} \\
& =A^{\top}+A \\
& =-Y \\
& =x
\end{aligned}
$$

2

Theorem 2

Any square matrix can be expressed as the sum of a symmetric and a skew symmetric matrix.

$$
\begin{aligned}
& \text { A= } \frac{\mathbf{1}}{\mathbf{2}}\left(\mathbf{A}+\mathbf{A}^{\prime}\right)+\frac{\mathbf{1}}{\mathbf{2}}\left(A-A^{\prime}\right) \\
& A \rightarrow \text { any Sq. Matrix } \\
& A=\text { Sym + SKew Sym } \\
& A=\frac{A+A^{\top}+A-A^{\top}}{2}=\frac{A+A^{\top}}{2}+\frac{A-A^{\top}}{2}
\end{aligned}
$$

Express the following matrices as the sum of a symmetric and a skew symmetric matrix.

$$
\begin{aligned}
\underbrace{\left[\begin{array}{cc}
3 & 5 \\
1 & -1
\end{array}\right]} & =\text { Sym }+ \text { Skew Sym } \\
& =\frac{A+A^{\top}}{2}+\frac{A-A^{\top}}{2} \\
& =\frac{\left[\begin{array}{cc}
3 & 5 \\
1 & -1
\end{array}\right]+\left[\begin{array}{cc}
3 & 1 \\
5 & -1
\end{array}\right]}{2}+\frac{\left(\begin{array}{cc}
3 & 5 \\
1 & -1
\end{array}\right]-\left[\begin{array}{cc}
3 & 1 \\
5 & -1
\end{array}\right]}{2} \\
& =\frac{\left[\begin{array}{cc}
6 & 6 \\
6 & -2
\end{array}\right]}{2}+\frac{\left[\begin{array}{cc}
0 & 4 \\
-4 & 0
\end{array}\right]}{2} \\
{\left[\begin{array}{cc}
3 & 5 \\
1 & -1
\end{array}\right] } & =\left[\begin{array}{cc}
3 & 3 \\
3 & -1
\end{array}\right]+\left[\begin{array}{cc}
2 & 2 \\
-2 & 4
\end{array}\right]
\end{aligned}
$$

2

Let A be a symmetric matrix of order 2 with integer entries. If the sum of the diagonal elements of $\widehat{A^{2}}$ is (1) then the possible number of such matrices is:

$$
a, b, c \in Z
$$

A. 6

$$
A=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]_{2 \times 2}
$$

$$
a^{2}+2 b^{2}+c^{2}=1
$$

B. 1
c. 4
D. 12

a	b	c	
(1)	1	0	0
(2)	-1	0	0
(6)	0	0	1
(4)	0	0	-1

JEE Main 2021
2

Properties of Symmetric \& Skew-Symmetric

1. If A is a symmetric matrix, then $-A, k A, A^{\top}, A^{n}, A^{-1}, B^{\top} A B$ are also symmetric matrices, where $n \in N, k \in R$ and B is a square matrix of order that A.

$$
\begin{aligned}
& \text { if } A \rightarrow \text { Sym } \\
& -A, \not \subset A, A^{\top}, A^{n}, A^{-1}, B^{\top} A B \rightarrow \text { sym } \\
& \text { Given: } A=A \\
& \text { To prove: } \mathrm{kA} \rightarrow \text { sym } \\
& \text { Proof: } X=K A \\
& \begin{array}{l}
\text { Given: } A^{\top}=A \\
\text { To prove:- } B^{\top} A B \rightarrow \text { sym }
\end{array} \\
& x^{\top}=(K A)^{\top}=K A^{\top}=K A \\
& X=B^{\top} A B \\
& =X \mid X^{\top}=\left(B^{\top} A B\right)^{\top}=B^{\top} A^{\top} B=B^{\top} A B=X
\end{aligned}
$$

$$
\begin{aligned}
& \left(A^{2023}\right)^{\top} \\
= & (A \cdot A \cdot A \cdot A \ldots A)^{\top} \\
= & \left(A^{\top}\right)\left(A^{\top}\right)\left(A^{\top}\right) \ldots\left(A^{\top}\right) \\
= & \left(A^{\top}\right)^{2023}
\end{aligned}
$$

Properties of Symmetric \& Skew-Symmetric
2. If A is a skew symmetric matrix, then
(a) $A^{2 n}$ is a symmetric matrix for $\mathbf{n} \in \mathbf{N}$,
(b) $A^{2 n+1}$ is a skew-symmetric matrix for $n \in N$,
(c) $\mathbf{k A}$ is also skew-symmetric matrix, where $\mathbf{k} \in \mathbf{N}$,
(d) $B^{\top} A B$ is also skew-symmetric matrix where B is a square matrix of order that of A.
Given:- $A^{\top}=-1$
To prove:- $X=A^{\text {2n+1 }} \rightarrow \begin{aligned} & \text { skew } \\ & \text { sym }\end{aligned}$
Proof: $X^{\top}=\left(A^{2 n+1}\right)^{\top}=(-A)^{2 n+1}=-A^{2 n+1}=-X$
2

Properties of Symmetric \& Skew-Symmetric
3. If A, B are two symmetric matrix, then
(a) $A \pm B, A B+B A$ are also symmetric matrix,
(b) $A B$ - $B A$ is a skew-symmetric matrix,
(c) $A B$ is a symmetric matrix, when $A B=B A$.

Given:- $A^{\top}=A$ and $B^{\top}=B$
To prove:- $A B-B A=X \longrightarrow$ skew Sym.
Proof:- $X^{\top}=(A B-B A)^{\top}$

$$
=(A B)^{\top}-(B A)^{\top}
$$

$=B^{\top} A^{\top}-A^{\top} B^{\top}$

$$
=B A-A B=-X
$$

2

Properties of Symmetric \& Skew-Symmetric

4. If A, B are two skew symmetric matrix, then
(a) $A \pm B, A B-B A$ are skew-symmetric matrices,
(b) $A B+B A$ is a symmetric matrix.
2

Let A and B be two symmetric matrices of order 3 .
Statement-1: A(BA) and (AB)A are symmetric matrices.
Statement-2: $\mathbf{A B}$ is symmetric matrix if matrix multiplication of
A with B is commutative.
A. Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
B. Statement -1 is true, Statement -2 is false.

$$
\text { Given: } \left.\begin{array}{rl}
A^{\top} & =A \\
B^{\top} & =B
\end{array}\right\}
$$

C. Statement -1 is false, Statement-2 is true.
D. Statement-1 is true, Statement-2 is true; is a correct explanation for Statement-1.

$$
\begin{aligned}
& (A B)^{\top} \\
= & B^{\top} A^{\top} \\
= & B A \\
= & A B
\end{aligned}
$$

$=A^{\top} B^{\top} A^{\top}$
$=A B A$
2

Let X and Y be two arbitrary, 3×3, non-zero, skew-symmetric matrices and \bar{Z} be an arbitrary 3×3, non-zero, symmetric matrix. Then which of the following matrices is (are) skew symmetric?

$$
\begin{aligned}
& \text { Given:- } \\
& \text { A. } \underline{Y^{3} Z^{4}-Z^{4} Y^{3}}(S y m) \\
& \left.X^{\top}=-X\right\} \\
& \text { JEE Adv. [2015] } \\
& \neq \underbrace{44+Y^{44}}(\text { Sym }) \\
& \mathfrak{Z}^{\top}=\neq \\
& \text { e. } X^{4} Z^{3}-Z^{3} X^{4}(\text { Skew }- \text { Sym) } \\
& \text { 0. } X^{23}+Y^{23}(\text { Skew Sym }) \\
& C=x^{4} z^{3}-z^{3} x^{4} \\
& C^{\top}=\left(x^{4} z^{3}\right)^{\top}-\left(z^{3} x^{4}\right)^{\top} \\
& =\left(z^{\top}\right)^{3}\left(x^{\top}\right)^{4}-\left(x^{\top}\right)^{4}\left(z^{\top}\right)^{3} \\
& =z^{3}(-x)^{4}-(-x)^{4}(z)^{3} \\
& =-C
\end{aligned}
$$

$$
\begin{array}{rl|l}
A & =Y^{3} Z^{4}-Z^{4} Y^{3} \\
A^{\top} & =\left(Y^{3} Z^{4}-Z^{4} Y^{3}\right)^{\top} & B=X^{44}+Y^{44} \\
& =(Y Y Y Z Z Z Z)^{\top}-(Z Z Z Z Y Y Y)^{\top} \\
& =\left(Z^{\top}\right)^{4}\left(Y^{\top}\right)^{3}-\left(Y^{\top}\right)^{3}\left(Z^{\top}\right)^{4} \\
& =Z^{4}(-Y)^{3}-(-Y)^{3}(Z)^{4} \\
& =-Z^{4} Y^{3}+Y^{3} Z^{4} \\
& =A
\end{array}
$$

2

Let A and B be any two 3×3 symmetric and skew symmetric matrices respectively. Then which of the following is NOT true?
(true)
X $\mathrm{A}^{4}-\mathrm{B}^{4}$ is a symmetric matrix
8. $\underbrace{A B-B A}$ is a symmetric matrix

$$
\begin{aligned}
& A^{\top}=A \\
& B^{\top}=-B
\end{aligned}
$$

JEE Main 2022
2. $\underbrace{B^{5}-A^{5}}$ is a skew-symmetric matrix (false)
(true)
$A B+B A$ is a skew-symmetric matrix

$$
\begin{aligned}
& (A B-B A)^{\prime} \\
& (A B)^{\prime}-(B A)^{\prime} \\
& B^{\prime} A^{\prime}-A^{\prime} B^{\prime} \\
& (-B)(A)-(A)(-B) \\
& -B A+A B
\end{aligned}
$$

$$
\begin{aligned}
X & =A B+B A \\
X^{\top} & =(A B)^{\prime}+(B A)^{\prime} \\
& =(-B)(A)+(A)(-B) \\
& =-B A-A B \\
& =-X
\end{aligned}
$$

$$
\begin{aligned}
X & =B^{5}-A^{5} \\
X^{\top} & =\left(B^{5}\right)^{\top}-\left(A^{5}\right)^{\top} \\
& =\left(B^{\top}\right)^{5}-\left(A^{\top}\right)^{5} \\
& =(-B)^{5}-(A)^{5}=-\left(B^{5}+A^{5}\right) \\
& \neq X \neq-x
\end{aligned}
$$

2

\checkmark Types of Matrices

Type of Matrices:

Orthogonal Matrix

$$
\mathbf{A}^{\mathrm{T}} \mathbf{A}=\mathbf{A} \mathbf{A}^{\mathrm{T}}=\mathbf{I}
$$

Idempotent Matrix
$A^{2}=A \quad \rightarrow$

$$
A^{3}=A^{4}=A^{n}=A
$$

(Ii) yolutory Matrix

$$
A^{2}=I_{n}
$$

Nilpotent Matrix
$A^{k}=0$

$$
A^{4}=0 A^{5}=A^{6}=\ldots=0
$$

Periodic Matrix
$\mathbf{A}^{\mathbf{k + 1}}=\mathbf{A}$
$k \rightarrow$ Period

Type of Matrices:

$$
\left.\begin{array}{rl|r}
A^{2} & =A \\
A^{3} & =A \cdot A^{2} & A^{4}
\end{array}=A \cdot A^{3} \right\rvert\, A^{\text {any }}=A
$$

Let $\mathrm{A}=\left(\begin{array}{ll}2 & -2 \\ 1 & -1\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{ll}-1 & 2 \\ -1 & 2\end{array}\right)$.

$$
(1,1)
$$

Then the number of elements in the set $\{(\underline{n, m}): n, m \in\{1,2, \ldots, 10\}$ and

$$
\begin{aligned}
& \left.n A^{n}+m B=I\right\} \text { is_ } \\
& A^{2}=\left(\begin{array}{cc}
2 & -2 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
2 & -2 \\
1 & -1
\end{array}\right)=\left(\begin{array}{cc}
2 & -2 \\
1 & -1
\end{array}\right)=A \\
& B^{2}=\left(\begin{array}{cc}
-1 & 2 \\
-1 & 2
\end{array}\right)\left(\begin{array}{cc}
-1 & 2 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{cc}
-1 & 2 \\
-1 & 2
\end{array}\right)=B
\end{aligned}
$$

$$
\begin{gathered}
n(A)+m(B)=I \\
n\left[\begin{array}{cc}
2 & -2 \\
1 & -1
\end{array}\right]+m\left[\begin{array}{cc}
-1 & 2 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
{\left[\begin{array}{ll}
2 n-m \\
-2 n+2 m \\
-n+2 m
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
n=m \quad 2 n-m=1 \\
n=m=1
\end{gathered}
$$

Let $A=\underbrace{\left[\begin{array}{ccc}2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right]}$ and $\underline{B=A-I}$ If $\omega=\frac{\sqrt{3} i-1}{2}$,
JEE Main 2022 then the number of elements in the set $\left\{n \in\{1,2, \ldots, 100\}: \underline{A}^{n}+(\omega B)^{n}=A+B\right\}$ is equal to \qquad
\# $A^{2}=A \quad A^{\text {any }}=A$

$$
\left\{\begin{array}{c}
\{3,9,15, \ldots, 99\} \\
(17) \quad 99=3+(n-1) 6 \\
n=17
\end{array}\right.
$$

$n=$ multi of 3
$n=$ odd

$$
\begin{aligned}
& B=A-I \\
& B^{(2)}=(A-I)^{2} \\
&=A^{2}-2 A+I \\
&=A-2 A+I \\
&=-A+I \\
&=-B \\
&=B(-B) \\
&=-B^{2} \\
&=-(-B) \\
&=B \\
& B^{\text {Even }}=B \cdot B^{2} \\
& B^{\text {Concept }} \\
& B^{\text {odd }}=-B
\end{aligned} \quad \begin{aligned}
& (A-B)^{3} \\
& =A^{2}-A B-B A+B^{2}
\end{aligned}
$$

Let $A=\left(\begin{array}{cc}1+i & 1 \\ -i & 0\end{array}\right)$ where $\mathrm{i}=\sqrt{-1}$.

$$
A^{4}=I
$$

$$
\begin{array}{rl|l}
A^{5} & =A \cdot A^{4} & A^{9} \\
& =A \cdot A \cdot A^{8} \\
& =A \cdot I & \\
& =A \cdot I \\
& =A &
\end{array}
$$

$$
\begin{aligned}
& \text { Then, the number of elements in the set } \\
& \left\{n \in\{1,2, \ldots ., 100\}: \begin{array}{l}
A^{4 k+1}=A \\
A^{(1)}=A
\end{array}\right\} \text { is } \\
& A^{2}=\left(\begin{array}{cc}
1+i & 1 \\
-i & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
1+i & 1 \\
-i & 0
\end{array}\right)=\left(\begin{array}{cc}
i & 1+i \\
1-i & -i
\end{array}\right) \\
& \left.A^{4}=A^{2} \cdot A^{2}=\left(\begin{array}{ll}
\frac{1}{1} 1 & 1+i \\
1-i & -i
\end{array}\right)\left(\begin{array}{l}
1 \\
1-i
\end{array}\right] \begin{array}{l}
1+i \\
-i
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I
\end{aligned}
$$

$4 k+1$

$$
\begin{aligned}
& \left\{A^{\prime}, A^{5}, A^{9}, A^{13}, \ldots, A^{97}\right\} \\
& 97=1+(n-1) 4 \\
& n=25
\end{aligned}
$$

Let $A=\left[a_{i j}\right]$ be a square matrix of order 3 such that $a_{i j}=2^{j-i}$, for all $i, j=$ $1,2,3$. Then , the matrix $A^{2}+A^{3}+\ldots+A^{10}$ is equal to :
2. $\left(\frac{3^{10}-3}{2}\right) A \quad a_{i j}=2^{j-i}$

JEE Main 2022
B. $\left(\frac{3^{10}-1}{2}\right) A A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]=\left[\begin{array}{ccc}1 & 2 & 2^{2} \\ \frac{1}{2} & 1 & 2 \\ \frac{1}{4} & \frac{1}{2} & 1\end{array}\right]$
D. $\left(\frac{3^{10}+3}{2}\right) A$

$$
A^{2}=3 A \Rightarrow 3 A+3^{2} A+3^{3} A+\cdots+3^{9} A
$$

$$
\Rightarrow \frac{3\left(3^{9}-1\right)}{3-1} A \Rightarrow\left(\frac{3^{10}-3}{2}\right) A
$$

$$
\begin{aligned}
A^{2} & =3 A \\
A^{3} & =A \cdot A^{2} \\
& =A \cdot(3 A) \\
& =3 A^{2} \\
& =3(3 A) \\
& =3^{2} A \\
A^{2} & =3^{1} A \\
A^{3} & =3^{2} A \\
A^{4} & =3^{3} A
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } \mathrm{M}=\left[\begin{array}{cc}
0 & -\alpha \\
\alpha & 0
\end{array}\right] \text {, where } \alpha \text { is a non-zero real } \\
& \text { number an } \mathrm{N}=\sum_{\mathrm{k}=1}^{49} \mathrm{M}^{2 \mathrm{k}} \text {. If }\left(\mathrm{I}-\mathrm{M}^{2}\right) \mathrm{N}=-2 \mathrm{I} \text {, then }
\end{aligned}
$$

the positive integral value of α is \qquad .
H.W.
2

If $M=\left(\begin{array}{rr}\frac{5}{2} & \frac{3}{2} \\ -\frac{3}{2} & -\frac{1}{2}\end{array}\right)$, then which of the following matrices is equal to $\underline{\underline{M^{2022}}}$?
(A) $\left(\begin{array}{rr}3034 & 3033 \\ -3033 & -3032\end{array}\right)$

$$
M=\left(\begin{array}{cc}
\frac{5}{2} & \frac{3}{2} \\
-\frac{3}{2} & -\frac{1}{2}
\end{array}\right)
$$

JEE Adv. 2022
(B) $\quad\left(\begin{array}{ll}3034 & -3033 \\ 3033 & -3032\end{array}\right)$
(C) $\quad\left(\begin{array}{rr}3033 & 3032 \\ -3032 & -3031\end{array}\right)$
$M=\left(\begin{array}{cc}\frac{3}{2} & \frac{3}{2} \\ -\frac{3}{2} & -\frac{3}{2}\end{array}\right)+\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$
$A^{2}=\left(\begin{array}{rr}1 & 1 \\ -1 & -1\end{array}\right) \cdot\left(\begin{array}{rr}1 & 1 \\ -1 & -1\end{array}\right)$
(D) $\quad\left(\begin{array}{rr}3032 & 3031 \\ -3031 & -3030\end{array}\right)$
$M=\frac{3}{2}\left(\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right)+I$
$A^{2}=0$

$$
A^{3}=A^{4}=A^{5}=\cdots=0
$$

$$
m=\frac{3}{2} A+3
$$

$$
\begin{aligned}
M^{2022} & =\left(\frac{3}{2} A+I\right)^{2022} \\
& =2022 C_{0}^{2022}\left(\frac{3}{2} A\right)+{ }_{2}^{2022}\left(\frac{3}{2} A\right)^{2}+\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right) \\
& =1 I+\left(\begin{array}{ll}
10222 \times \frac{3}{2} \\
& =\left(\begin{array}{ll}
1033 & 3033 \\
0 & 1
\end{array}\right)+3033
\end{array}\right) \\
& =\left(\begin{array}{ll}
3034 & 3033 \\
-3033 & -3032
\end{array}\right)
\end{aligned}
$$

Important Concept :
Gen Matrix
If $\boldsymbol{A}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then

$$
\left[\begin{array}{ll}
\therefore & - \\
- & - \\
-- & -
\end{array}\right]
$$

$\operatorname{Tr}\left(A A^{\top}\right)=\operatorname{Tr}\left(A^{\top} A\right)=()^{2}+()^{2}+\cdots \cdot$
$T_{r}\left(A A^{T}\right)=a_{11}^{2}+a_{12}^{2}+a_{13}^{2}+a_{21}^{2}+a_{22}^{2}+a_{23}^{2}+a_{31}^{2}+a_{32}^{2}+a_{33}^{2}$

$$
\begin{aligned}
& A A^{\top}=\left[\begin{array}{lll}
\frac{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13}
\end{array}\right]}{\left.\begin{array}{lll}
a_{21} & a_{22} & a_{23}
\end{array}\right]} \begin{array}{|l|l}
\overline{a_{31}} & a_{32}
\end{array} a_{33}
\end{array}\right] \cdot\left[\begin{array}{l}
a_{11} \\
a_{12} \\
a_{13}
\end{array}\right]\left[\begin{array}{l}
a_{2} \\
a_{2} \\
0 \\
-\overline{a_{21}^{2}+a_{22}^{2}+a_{23}^{2}}- \\
-\quad-a_{31}^{2}+a_{32}^{2}+a_{33}^{2}
\end{array}\right]
\end{aligned}
$$

2

How many $\mathbf{3 \times 3}$ matrices \mathbf{M} with entries from $\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}$ are there, for which the sum of the diagonal entries of $M^{\top} M$ is 5 ?
A. 126
B. 135
C. $162 \underline{S}=T_{r}\left(M^{T} M\right)=a_{11}^{2}+a_{12}^{2}+a_{13}^{2}+a_{21}^{2}+a_{22}^{2}+a_{23}^{2}+a_{31}^{2}+a_{32}^{2}+a_{33}^{2}$
D. 198
c-1 $\frac{9!}{5!4!}$
$1,1,1,1,1$
c-2 $\frac{9!}{7!}$

$$
2,1,0,0,0,0,0,0,0
$$

2

Let S be the set containing all 3×3 matrices with entries from $\{-1,0,1\}$.
The total number of matrices $A \in S$ such that the sum of all the diagonal elements of $A^{\top} A$ is(6)is_. $1 /-1$

$$
\begin{aligned}
& \text { If } \boldsymbol{M}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \text {, then } \\
& \begin{array}{l}
\underline{\checkmark} \simeq \\
\simeq \simeq _ \\
--\quad-
\end{array} \\
& 6=T_{r}\left(M^{T} M\right)=a_{11}^{2}+a_{12}^{2}+a_{13}^{2}+a_{21}^{2}+a_{22}^{2}+a_{23}^{2}+a_{31}^{2}+a_{32}^{2}+a_{33}^{2} \\
& 6=(\pm 1)^{2}+(\pm 1)^{2}+(\pm 1)^{2}+(\pm 1)^{2}+(\pm 1)^{2}+(\pm 1)^{2}+0+0+0 \\
& \left|\begin{array}{l}
6 \text { chairs } \Rightarrow \pm 1 \quad \text { chair } \Rightarrow \underline{0} \\
{ }^{9} \times 2^{6} \\
C_{C}
\end{array}\right|=1376
\end{aligned}
$$

2

Let M be any 3×3 matrix with entries from the set $\{0,1,2\}$. The maximum number of such matrices, for which the sum of diagonal elements of $M^{\top} M$ is seven is
2

Minors

$$
\begin{aligned}
\mathbf{D}= & \left|\begin{array}{lll}
\mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} \\
\mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} \\
\mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33}
\end{array}\right| \\
M_{11} & =\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{i} \\
a_{32} & a_{33}
\end{array}\right| \quad M_{31}=\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right| \\
M_{12} & =\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|
\end{aligned}
$$

Cofactor :

$$
\begin{aligned}
& \not E_{i j}=(-1)^{i+j} M_{i j} \\
& C_{i j}=(-1)^{i+j} M_{i j}
\end{aligned}
$$

$$
\begin{aligned}
& c_{12}=(-1)^{1+2} m_{12}=-m_{12} \\
& c_{11}=(-1)^{1+1} m_{11}=+m_{11} \\
& c_{31}=m_{31}
\end{aligned}
$$

Determinant value of 3×3

$$
\begin{aligned}
& c_{11}=m_{11}=4 \\
& c_{12}=-m_{12}=-11 \\
& c_{13}=m_{13}=8
\end{aligned}
$$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
2 & -3 & 1 \\
2 & 0 & -1 \\
1 & 4 & 5
\end{array}\right|=2\left|\begin{array}{cc}
0 & -1 \\
4 & 5
\end{array}\right|+3\left|\begin{array}{cc}
2 & -1 \\
1 & 5
\end{array}\right|+1\left|\begin{array}{ll}
2 & 0 \\
1 & 4
\end{array}\right| \\
= & a_{11} c_{11}+a_{12} C_{12}+a_{13} C_{13} \\
= & (2)(4)+(-3)(-11)+(1)(8) \\
= & 8+33+8 \\
= & 49
\end{aligned}
$$

* Adjoint of Matrix

Definition : Adjoint of A

$$
\begin{array}{rc}
\text { adjoint }=(\text { cofactor })^{\top} & \mathbf{A}=\left[\begin{array}{lll}
\mathbf{a}_{\mathbf{1 1}} & \mathbf{a}_{12} & \mathbf{a}_{\mathbf{1 3}} \\
\mathbf{a}_{\mathbf{2 1}} & \mathbf{a}_{22} & \mathbf{a}_{23} \\
\mathbf{a}_{\mathbf{3 1}} & \mathbf{a}_{\mathbf{3 2}} & \mathbf{a}_{33}
\end{array}\right] \\
\operatorname{adj} A=(\text { Cofactor } A)^{\top} & \text { Cofactor }=\left[\begin{array}{lll}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{array}\right] \\
& \underline{\text { Adj } \mathbf{A}}=\left[\begin{array}{lll}
\mathbf{C}_{\mathbf{1 1}} & \mathbf{C}_{\mathbf{2 1}} & \mathbf{C}_{\mathbf{3 1}} \\
\mathbf{C}_{\mathbf{1 2}} & \mathbf{C}_{\mathbf{2 2}} & \mathbf{C}_{\mathbf{3 2}} \\
\mathbf{C}_{\mathbf{1 3}} & \mathbf{C}_{\mathbf{2 3}} & \mathbf{C}_{\mathbf{3 3}}
\end{array}\right]
\end{array}
$$

Adjoint of A
Find the adjoint of the matrix.

$$
\begin{aligned}
A=\left[\begin{array}{ccc}
3 & 1 & -1 \\
2 & -2 & 0 \\
1 & 2 & -1
\end{array}\right] \longrightarrow \operatorname{Minor}(A)=\left[\begin{array}{ccc}
2 & -2 & 6 \\
1 & -2 & -5
\end{array}\right] \\
\operatorname{Cof}(A)=\left[\begin{array}{ccc}
2 & 2 & 6 \\
-1 & -2 & -5 \\
-2 & -2 & -8
\end{array}\right] \\
\operatorname{adj} A=\left[\begin{array}{ccc}
2 & -1 & -2 \\
2 & -2 & -2 \\
6 & -5 & -8
\end{array}\right]
\end{aligned}
$$

\#NVStyle

Properties of Adjoint

$$
\Rightarrow|k A|=k^{n}|A|
$$

NV10

$|\operatorname{adj} \mathrm{A}|=|\mathbf{A}|^{n-1}$

$|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))|=|A|^{(n-1)^{3}}$
$n \rightarrow$ order of Matrix
(1) $\operatorname{Aadj} A=|A| I$
(2) $\operatorname{adj}(A B)=(\operatorname{adj} B)(\operatorname{adj} A)$
(3) $\operatorname{adj}(k A)=k^{n-1} \operatorname{adj} A$
(4) $\operatorname{adjadj} A=|A|^{n-2} A$
(5) $|\operatorname{adj} A|=|A|^{n-1}$
(7) $\operatorname{adj}\left(A^{-1}\right)=(\operatorname{adj} A)^{-1}=\frac{A}{|A|}$
(8) $|K A|=K^{n}|A|$
(9) $|A B|=|A||B|$
(6) $|\operatorname{adj} \operatorname{adj} A|=|A|^{(n-1)^{2}}$Let k be a positive real number and let
Skew Sym.

$$
A=\left[\begin{array}{ccc}
2 k-1 & 2 \sqrt{k} & 2 \sqrt{k} \\
2 \sqrt{k} & 1 & -2 k \\
-2 \sqrt{k} & 2 k & -1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
0 & 2 k-1 & \sqrt{k} \\
1-2 k & 0 & 2 \sqrt{k} \\
\hline-\sqrt{k} & -2 \sqrt{k} & 2
\end{array}\right]
$$

$\mathrm{If} \operatorname{det}(\operatorname{adj} A)+\operatorname{det}(\operatorname{adj} B)=106$. Then $[k]$ is equal to

A property.
Skew Sym + odd orch
$|A|=0$
[Note: adj M denotes the adjoint of square matrix M and [k] denotes the largest integer less than or equal to k].

$$
\left\{\begin{array}{c}
|\operatorname{adj} A|+|\operatorname{adj} B|=10^{6} \\
|A|^{2}+|B|^{2}=10^{6} \\
|A|^{2}=10^{6} \\
|A|=10^{3}
\end{array}\right.
$$

(JEE Adv. 2010)

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{ccc}
\mathbf{2 k}-\mathbf{1} & \mathbf{2} \sqrt{\mathbf{k}} & \mathbf{2} \sqrt{\mathbf{k}} \\
\mathbf{2} \sqrt{\mathbf{k}} & \mathbf{1} & -\mathbf{2 k} \\
-\mathbf{2} \sqrt{\mathbf{k}} & \mathbf{2 k} & -\mathbf{1}
\end{array}\right]=(2 k+1)^{3} \\
(2 k+1)^{3}=10^{3} \\
2 k+1=10 \\
\therefore[A+[4.5]=4
\end{gathered}
$$

2

Let $S=\{\sqrt{\mathrm{n}}: 1 \leq \mathrm{n} \leq 50$ and his odd $\}=\{\sqrt{1}, \sqrt{3}, \sqrt{5}, \ldots, \sqrt{49}\}$

$$
a \in\{\sqrt{1}, \sqrt{3}, \sqrt{5}, \ldots, \sqrt{49}\}
$$

Let $a \in S$ and $A=\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 0 \\ -a & 0 & 1\end{array}\right] \Rightarrow 1(1)+a(a)=1+a^{2}$
If $\sum_{\mathrm{a} \in \mathrm{S}} \operatorname{det}(\operatorname{adj} A)=100 \lambda$, then λ is equal to (JEE M 2022)
A. 218
B. 221
C. 663
D. 1717

$$
\sum_{a \in S}|\operatorname{adj} A|=\sum_{a \in s}|A|^{2}
$$

$$
=\sum_{a \in S}\left(1+a^{2}\right)^{2}
$$

$$
=2^{2}+4^{2}+6^{2}+\cdots+50^{2}
$$

$$
\begin{aligned}
& =2^{2}\left(1^{2}+2^{2}+3^{2}+\ldots+25^{2}\right) \\
& =44 \frac{(255)(26)(54)}{6}=100 \lambda \\
& \lambda=13 \times 17 \\
& =221
\end{aligned}
$$

Let A be a 3×3 invertible matrix. If $\left.\operatorname{ladj}(24 A)|=|\operatorname{adj}(3 \operatorname{adj}(2 A))|$, then $| A\right|^{2}=$? is equal to:
A. 6^{6}
B. 2^{12}
C. 2^{6}
D. 1 (C)

$$
|\operatorname{adj}|=|a|^{n-1}
$$

$$
\overparen{\overparen{24 A}}|=\overparen{3} \operatorname{adj}(2 A)|
$$

$$
\begin{aligned}
& |A|=8 \\
& |A|^{2}=64
\end{aligned} \quad \begin{array}{ll}
3^{3} 8^{3}|A|=3^{3}|\operatorname{adj}(2 A)| \\
8^{3}|A|=\mid \\
2 A||2 A| \\
8^{3}|A|=2^{3}|A| 2^{3}|A| \\
2^{9}=2^{6}|A|
\end{array}
$$

$$
|\operatorname{adj}(24 A)|=|\operatorname{adj} 3 \operatorname{adj}(2 A)|
$$

JEE Main 2022
2

Let A and B be two 3×3 matrices such that $|A B|=\mid I$ and $|A|=1 / 8$ then $|\operatorname{adj}(\operatorname{Badj}(2 A))|$ is equal to

$$
|A||B|=1 \quad|A|=\frac{1}{8}
$$

A. 16
B. 32
e. 64
D. 128

$$
\begin{array}{ll}
=|B-\operatorname{adj}(2 A)|^{2} \\
=|B|^{2} \mid \operatorname{adj}(2 A)^{2} & (|A B|=|A||B|) \\
=|B|^{2}\left(|2 A|^{2}\right)^{2} & \left.|B|^{2}|2 A| T_{2 A}\right|^{2}|2 A| T_{2 A} \mid \\
=|B|^{2}|2 A|^{4} & =|A|^{12} \\
= & =8^{2} \times 2^{12} \times\left(\frac{1}{8}\right)^{4} \\
& =2^{12}
\end{array}
$$

2

The positive value of the determinant of the matrix
A, whose $|\operatorname{Adj}(\operatorname{Adj}(A))|=\left(\begin{array}{ccc}14 & 28 & -14 \\ -14 & 14 & 28 \\ 28 & -14 & 14\end{array}\right)$, is \qquad .

DIY

Let A be a matrix of $\operatorname{order} 3 \times 3$ and $\operatorname{det}(A)=2$, then $\operatorname{det}(\operatorname{det}(A) \operatorname{adj}(5$ $\left.\operatorname{adj}\left(A^{3}\right)\right)$) is equal to_.
A. 512×10^{6}
B. 256×10^{6}

JEE Main 2022
C. 1024×10^{6}
D. 256×10^{11}

DIY

\checkmark Inverse of

Matrix

Reciprocal/maltiplicative Inv.
Definition: Inverse of A

$$
3 \rightarrow \frac{1}{3}
$$

A square matrix A said to be invertible (non singular) if there exists a matrix B such that $\mathbf{A B}=\mathbf{I}=\mathbf{B A}$
B is called the inverse of A and is denoted by A^{-1}. Thus $A^{-1}=B \Leftrightarrow A B=I=B A$.

$$
\begin{aligned}
& A\left(\frac{\operatorname{adj} A}{|A|}\right)=I\left(A^{-1}=\frac{\operatorname{adj} A}{|A|} \quad \begin{array}{l}
(3)(?)=1 \\
A\left(\frac{\operatorname{adj} A}{|A|}\right)=I \quad A^{-1}=\frac{\operatorname{adj} A}{|A|}
\end{array}, \begin{array}{l}
(A)(?)
\end{array}, l\right.
\end{aligned}
$$

Formula: Inverse of A

$$
A^{-1}=\frac{(\operatorname{adj} A)}{|A|}
$$

$$
\begin{aligned}
& |A|=0 \Rightarrow \text { Singular } \\
& |A| \neq 0 \Rightarrow \text { Non-Singular. }
\end{aligned}
$$

Note: A^{-1} exists if A is non-singular.

$$
\begin{array}{ll}
|A|=0 & A^{-1}=D \cdot N \cdot E \\
|A| \neq 0 & A^{-1}=\text { Exist }
\end{array}
$$

Shortcut: Inverse of 2×2

$$
\begin{aligned}
{\left[\begin{array}{cc}
4 & 7 \\
2 & 6
\end{array}\right]^{-1} } & =\frac{\left[\begin{array}{cc}
6 & -7 \\
-2 & 4
\end{array}\right]}{24-14} \\
& =\frac{1}{10}\left[\begin{array}{cc}
6 & -7 \\
-2 & 4
\end{array}\right]
\end{aligned}
$$

Shortcut: Inverse of Diagonal matrix
(SC2) $\left[\begin{array}{ccc}1 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & 2 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & (3\end{array}\right]^{-\mathbf{1}}=\left[\begin{array}{ccc}\frac{1}{1} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3}\end{array}\right]$

Shortcut: Inverse of 3×3 matrix

SC 3

$$
A=\left[\begin{array}{ccc}
0 & 0 & 4 \\
2 & -1 & 3 \\
1 & 1 & 4
\end{array}\right]
$$

$$
A(?)=I
$$

$$
\left(A^{k}\right)^{-1}=\left(A^{-1}\right)^{k}=A^{-k}, k \in N
$$

$$
\left(\Delta^{T}\right)^{-1}=\left(\Delta^{-1}\right)^{T}
$$

$$
\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}
$$

$$
\begin{aligned}
& \frac{A}{\left|A^{-1}\right|=\frac{A}{-1}}+\frac{1}{|A|}
\end{aligned}
$$

$$
\left(A^{-1}\right)^{-1}=A
$$

$$
\left|A A^{-1}\right|=|I|
$$

$$
|A|\left|A^{-1}\right|=1
$$

$$
\sqrt{(A B)^{-1}=B^{-1} A^{-1}}
$$

$$
\left(A^{-1}\right)=\frac{1}{|A|} \quad(k A)^{-1}=\frac{1}{\frac{1}{k}} A^{-1}
$$

$$
\begin{aligned}
(A B)^{\prime}= & B^{\prime} A^{\prime} \\
\operatorname{adj}(A B)= & (\operatorname{adj} B)(\operatorname{adj} A) \\
(A B)^{-1}= & B^{-1} A^{-1} \\
& (K A)^{-1}=\frac{1}{k} A^{-1}
\end{aligned}
$$

For any 3×3 matrix M, let $|M|$ denote the determinant of M. Let I be the 3×3 identity matrix. Let E and F be two 3×3 matrices such that ($I-E F$) is invertible. If $G=(I-E F)^{-1}$, then which of the following statements is (are)
TRUE ?
$A B C$
(A) $|F E|=|I-F E||F G E|$
(B) $(I-F E)(I+F G E)=I$
(e) $E F G=G E F$
(】) $(I-F E)(I-F G E)=I$

$$
\begin{aligned}
& \widehat{G X=X G=I} \\
& \widehat{G(I-E F)}=(I-E F) G=I \\
& G-G E F=G-E F G=I
\end{aligned}
$$

$$
\text { | } D \text { 价 } S=\mid \text { | }
$$

$$
1=|I-F E||G| \delta \begin{aligned}
& X G=\underline{X X^{-1}} \\
& X G=I
\end{aligned}
$$

$$
\begin{aligned}
& G X=X^{-1} X \\
& G X=I
\end{aligned}
$$

(b)

$$
\begin{aligned}
& (I-F E)(I+F G E) \\
= & I+F G E-F E-F E F G E \\
= & I+F G E-F E-F(G-I) E \\
= & I+F G E-F E-F G E+F E \\
= & I
\end{aligned}
$$

Let M be a 3×3 invertible matrix with real entries and let I denote the 3×3 identity matrix. $\operatorname{If} M^{-1}=\operatorname{adj}(\operatorname{adj} M)$, then which of the following statements is/are ALWAYS TRUE?
$M=I$
B. $\operatorname{det} M=1$
c. $M^{2}=I$
b. $(\operatorname{adj} M)^{2}=I$

$$
\begin{aligned}
& M^{-1}=\operatorname{adj}(\operatorname{adj} M) \\
& M^{-1}=|M| M \\
& M^{-1}=M \\
& \frac{\operatorname{adj} M}{|M|}=M \\
& \operatorname{adjM}=M
\end{aligned}
$$

(JEE Adv. 2020)

$$
\operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} A
$$

2

Let M and N be two 3×3 non-singular skew-symmetric matrices such that $M N=N M$. If P^{\top} denotes the transpose of P, then $\underline{M}^{2} \underline{N}^{2}\left(M^{\top} N\right)^{-1}\left(M N^{-1}\right)^{\top}$ is equal to

Given: $M^{\top}=-M$ and $N^{\top}=-N$
A. M^{2}

$$
(M N)=(N M)
$$

B. $-\mathrm{N}^{2}$
c. $-M^{2}$

To Find:- $M M N N\left(M^{\top} N\right)^{-1}\left(m N^{-1}\right)^{\top}$
D. $M N$

$$
\begin{aligned}
& X X^{-1}=I \\
& A A^{-1}=I
\end{aligned}
$$

$\Rightarrow M M N N N^{-1}\left(m^{\top}\right)^{-1}\left(N^{-1}\right)^{\top} M^{\top}$
(JEE Adv 2011)
$\Rightarrow M M N\left(m^{\top}\right)^{-1}\left(N^{\top}\right)^{-1} M^{\top}$
$\Rightarrow M M N\left(N^{\top} M^{T}\right)^{-1} M^{\top}$
$\Rightarrow m(\underbrace{N M)(N M)^{-1}} M^{\top}=m m^{\top}=m(-m)=-M^{2}$
2
$\operatorname{Let} M=\left[\begin{array}{lll}0 & 1 & a \\ 1 & 2 & 3 \\ 3 & b & 1\end{array}\right]$ and $(\operatorname{adj} M)=\left[\begin{array}{ccc}-1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1\end{array}\right]$ where a and b are real numbers. Which of the following options is/are correct?
A. $a+b=3$
2. $\operatorname{det}\left(\operatorname{adj} M^{2}\right)=81$
$\underbrace{\frac{m}{\left.m\right|^{+}}} r^{\frac{m}{|m|}}$
2. $\left(\operatorname{adj} M^{-1}+\operatorname{adj}\left(M^{-1}\right)=-M\right.$

b. If $M\left[\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, then $\alpha-\beta+\gamma=3$

$$
\begin{gathered}
2-3 b=-1 \\
\therefore b=1
\end{gathered}
$$

(JEE Adv. 2019)
$-3 a=-6$
$\therefore a=2$

$$
\begin{aligned}
|m|=\left|\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right| & =-1(-8)+2(-5)=-2 \\
\left|\operatorname{adj}\left(m^{2}\right)\right| & =\left|m^{2}\right|^{2} \quad(\operatorname{adj} m)^{-1}=\operatorname{adj}\left(m^{-1}\right)=\frac{m}{|m|} \\
& =|m|^{4} \\
& =(-2)^{4} \\
& =16 \\
& \neq 81
\end{aligned}
$$

$$
\left.\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad \begin{array}{l}
\beta+2 \gamma \\
\alpha+2 \beta+3 \gamma \\
3 \alpha+\beta+\gamma
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\left[\begin{array}{l}
m^{-1} m\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \\
\left.\begin{array}{l}
\alpha \\
\gamma
\end{array}\right]=\frac{\operatorname{adjm}}{-2}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \\
{\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right]=\frac{1}{-2}\left[\begin{array}{ccc}
\frac{-1}{8} & 1 & -1 \\
-5 & 2 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]} \\
{\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right]=\frac{1}{-2}[}
\end{array}\right]
$$

Join with us in Telegram

TELEGRAM CHANNEL
 . t.me/unacademyatoms

COMPLETE NOTES AND LECTURES

tinyurl.com/unacademyatoms

If you want to be the BEST "Learn" from the BEST

Halliday / Resnick / Walker PHYSICS Yor JeE (MAIN \& ADVANCED)
Vamer

THOMA

CALCULUS FOR THE JEE

Chank ofou!
 + SUBSCRIBE

PDF
\checkmark Download Now !

