# BOUNCE BACK 2.0



JEE MAINS & ADVANCED ONE SHOT

# PERIODIC CLASSIFICATION

SAKSHI VORA







# **Nurture Batch**

for IIT JEE Main and Advanced 2024

# Code: SAKSHI

### Batch highlights:

- Curated by India's Top Educators
- Coverage of Class 11 JEE syllabus
- Enhance conceptual understanding of JEE Main & JEE Advanced subjects
- Systematically designed courses
- Strengthen JEE problem-solving ability



Prashant Jain
Mathematics Maestro



**Nishant Vora**Mathematics Maestro



Ajit Lulla
Physics Maestro



Abhilash Sharma Physics Maestro



**Sakshi Vora** Chemistry Maestro



Megha Khandelwal Chemistry Maestro



# **Evolve Batch**

for Class 12th JEE Main and Advanced 2023

# Code: SAKSHI

## **USPs of the Batch**

- Top Educators from Unacademy Atoms
- Complete preparation for class 12th syllabus of JEE Main & Advanced
- Quick revision, tips & tricks



**Nishant Vora** Mathematic Maestro



**Ajit Lulla** Physics Maestro



Sakshi Ganotra
Organic & Inorganic
Chemistry Maestro



Megha Khandelwal Chemistry Maestros



Prashant Jain Mathematics Maestro



Abhilash Sharma Physics Maestro



# Achiever Batch 2.0

for IIT JEE Main and Advanced 2023 Proppers

# Code: SAKSHI

## **Batch highlights:**

- Learn from India's Top Educators
- Coverage of Class 11 & 12 syllabus of JEE
- · Deep dive at a conceptual level for JEE Main and JEE Advanced
- Systematic course flow of subjects and related topics
- Strengthening the problem-solving ability of JEE level problems



Nishant Vora Mathematics Maestros



**Prashant Jain** Mathematics Maestros



Ajit Lulla Physics Maestros



Abhilash Sharma Physics Maestros



Sakshi Vora Chemistry Maestros



Megha Khandelwal Chemistry Maestros

For more details, contact 8585858585





**IIT JEE subscription** 



| SERIES      | GROUPS OF ELEMENTS                        |                                                  |                                                   |                                                   |                                                   |                                                            |                                                      |                                                   |                                                                   |
|-------------|-------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------|
|             | 0                                         | I                                                | п                                                 | III                                               | IV VI VII VIIV VIV                                |                                                            |                                                      |                                                   |                                                                   |
| 1<br>2<br>3 | Helium<br>He<br>4.0<br>Neon<br>Ne<br>19.9 | Na<br>23.5                                       | Beryllium<br>Be<br>9.1<br>Magnesium<br>Mg<br>24.3 | B<br>11.0<br>Aluminium<br>Al<br>27.0              | Carbon<br>C<br>12.0<br>Silicon<br>Si<br>28.4      | Nitrogen<br>N<br>14.04<br>Phosphorus<br>P<br>31.0          | Oxygen<br>O<br>16.00<br>Sulphur<br>S<br>32.06        | Fluorine<br>F<br>19.0<br>Chlorine<br>Cl<br>35.45  |                                                                   |
| 4<br>5      | Argon<br>Ar<br>38                         | Potassium<br>K<br>39.1<br>Copper<br>Cu<br>63.6   | Calcium<br>Ca<br>40.1<br>Zinc<br>Zn<br>65.4       | andium Sc 7 44.1 Gallium Ga 70.0                  | Titanium<br>Ti<br>48.1<br>Germanium<br>Ge<br>72.3 |                                                            | Chromium<br>Cr<br>52.1<br>Selenium<br>Se<br>79       | Manganese<br>Mn<br>55.0<br>Bromine<br>Br<br>79.95 | Iron Cobalt Nickel<br>Fe Co Ni (Cu)<br>55.9 59 59                 |
| 6<br>7      | Krypton<br>Kr<br>81.8                     | Rv'sidium<br>Rb<br>85.4<br>Silver<br>Ag<br>107.9 | Strontium<br>Sr<br>87.6<br>Cadmium<br>Cd<br>112.4 | Yttrium<br>Y<br>89.0<br>Indium<br>In<br>114.0     | Zirconium<br>Zr<br>90.6<br>Tin<br>Sn<br>119.0     | Niobium<br>Nb<br>94.0<br>Antimony<br>Sb<br>120.0           | Molybdenum<br>Mo<br>96.0<br>Tellurium<br>Te<br>127.6 | -<br>Iodine<br>I<br>126.9                         | Ruthenium Rhodium Palladium<br>Ru Rh Pd (Ag)<br>101.7 103.0 106.5 |
| 8<br>9      | Xenon<br>Xe<br>128                        | Caesium<br>Cs<br>132.9                           | Barium<br>Ba<br>137.4                             | Lanthanum<br>La<br>139                            | Cerium<br>Ce<br>140                               |                                                            | -                                                    | -                                                 |                                                                   |
| 10<br>11    | -                                         | -<br>Gold<br>Au<br>197.2                         | -<br>Mercury<br>Hg<br>200.0                       | Ytterbium<br>Yb<br>173<br>Thallium<br>Tl<br>204.1 | Lead<br>Pb<br>206.9                               | Tantalum Ta 183 Bismuth Bi 208                             | Tungsten<br>W<br>184                                 | -                                                 | Osmium Iridium Platinum<br>Os Ir Pt (Au)<br>191 193 194.9         |
| 12          | -                                         |                                                  | Radium<br>Ra<br>224                               | . (                                               | Thorium<br>Th<br>232                              | 1                                                          | Uranium<br>U<br>239                                  | (                                                 | (                                                                 |
|             | R                                         | R <sub>2</sub> O                                 | RO                                                | R <sub>2</sub> O <sub>3</sub>                     | RO 2 HIC                                          | HIGHER SAL<br>R <sub>2</sub> O <sub>5</sub><br>SHER GASEOU | INE OXIDES<br>RO3<br>S HYDROGEN O                    | P <sub>2</sub> O <sub>7</sub>                     | $RO_4$                                                            |

RH3

 $RH_2$ 

RH

RH4











Metals generally melt at very high temperature. Amongst the following, the metal with the highest melting point will be

- A. Hg
- B. Ag
- C. Ga
- D. Cs



# The correct order of electron gain enthalpies of Cl, F, Te and Po is





- C. Te < Po < Cl < F  $\propto$
- D. Cl < F < Te < Po







Which of the following elements in considered as a metalloid?

jee main 2022

- A. Sc
- B. Pb  $\nearrow$
- C. Bi

D. 7



Assertion (A): The ionic radii of O<sup>2-</sup> and Mg<sup>2+</sup> are same.

Reason (R): Both O<sup>2-</sup> and Mg<sup>2+</sup> are isoelectronic species

In the light of the above statements, choose the correct answer from the options given below  $0^{2-} \quad 8 \quad 10^{2}$ 

- A. Both (A) and (R) are true and (R) is the correct explanation of (A)
- B. Both (A) and (R) are true but (R) is not the correct explanation of (A)
- **C.** (A) is true but (R) is false
- (A) is false but (R) is true



# ju main 2022)

The correct order of increasing ionic radii is

- $N^{3-} < O^{2-} < F^{-} < Na^{+} < Mg^{2+}$
- c.  $F^- < Na^+ < O^{2-} < Mg^{2+} < N^{3-}$
- $Na^{+} < F^{-} < Mg^{2+} < O^{2-} < N^{3-}$



Element "E" belongs to the period 4 and group 16 of the periodic table. The valence shell electron configuration of the element, which is just above 'E'

# in the group is



- B.  $3d^{10}$ .  $4s^2$ ,  $4p^4$
- C.  $4d^{10}$ .  $5s^2$ ,  $5p^4$
- D.  $2s^2$ , p4  $\frac{7}{}$

je main 2022

4 period gp K 4s 3d 4p 5



Match List-I with List-II.

|     | List-I (Oxide)   | List-II (Nature) |            |  |
|-----|------------------|------------------|------------|--|
| (A) | $Cl_2O_7$        | (I)              | Amphoteric |  |
| (B) | $Na_2O$          | (II)             | Basic      |  |
| (C) | $Al_2O_3$        | (III)            | Neutral    |  |
| (D) | N <sub>2</sub> Q | (IV)             | Acidic     |  |



Choose the **correct** answer from the options given below:

A. 
$$(A) - (IV), (B) - (III), (C) - (I), (D) - (II)$$
  
 $(A) - (IV), (B) - (II), (C) - (I), (D) - (III)$   
 $(A) - (II), (B) - (IV), (C) - (III), (D) - (I)$   
 $(A) - (I), (B) - (II), (C) - (IIII), (D) - (IV)$ 



Assertion A: The first ionization enthalpy for oxygen is lower than that of nitrogen.

Reason R: The four electrons in 2p orbitals of oxygen experience more electron - electron repulsion

In the light of the above statements, choose the correct answer from the

Both A and R are correct and R is the correct explanation of A

- B. Both A and R are correct but R is not the correct explanation of A.
- C. A is correct but R is not correct.

options given below.

D. A is not correct but R is correct



# The IUPAC nomenclature of an element with electronic configuration

(Rn) 5f<sup>14</sup>6d<sup>1</sup>7s<sup>2</sup> is:

- A. Unnilibium
- **B.** Unnilunium
- C. Unnilquadium
- v. unniltrium





The first ionization enthalpies of Be, B, N and O follow the order

- O < N < B < Be
- **B.** Be < B < N < O
- C. B < Be < N < O



di < B< Be< C < O < N< F< Ne



Given two statements below:

Statement I: In Cl<sub>2</sub> molecule the covalent radius is double of the atomic radius of chlorine.

Statement II: Radius of anionic species is always greater than their parent atomic radius.

Choose the most appropriate answer from options given below:



- A. Both statement I and statement II are correct
- B. Both statement I and statement II are incorrect
- C. Statement I is correct but statement II is incorrect
- . Statement I is incorrect but statement II is correct



Electronic configurations of four elements A, B, C, D are given below:

10 man 2022



The correct order of first ionization enthalpy for them is

A. 
$$(A) < (B) < (C) < (D)$$

C. 
$$(B) < (D) < (A) < (C)$$

**D.** (B) 
$$<$$
 (A)  $<$  (C)  $<$  (D)



In which of the following pairs, electron gain enthalpies of constituent elements are nearly the same or identical?

- A. Rb and Cs
- B. Na and K
- C. Ar and Kr
- D. I and At

Choose the correct answer from the options given below:

- A. (A) and (B) only
- B. (B) and (C) only
- C. (A) and (C) only
- D. (C) and (D) only



# The correct decreasing order for metallic character is

- A. Na > Mg > Be > Si > P
- **B.** P > Si > Be > Mg > Na
- **C.** Si > P > Be > Na > Mg
- D. Be > Na > Mg > Si > P



Which of the following pair of molecules contain odd electron molecule and an expanded octet molecule?

- A. BCl<sub>3</sub> and SF<sub>6</sub>
- B. NO and H<sub>2</sub>SO<sub>4</sub>
- C. SF<sub>6</sub> and H<sub>2</sub>SO<sub>4</sub>
- D. BCl<sub>3</sub> and NO



The first ionization enthalpy of Na, Mg and Si, respectively, are: 496, 737 and 786 kJ mol<sup>-1</sup>. The first ionization enthalpy (kJ mol<sup>-1</sup>) of Al is:

- A. 487
- B. 768
- **C.** 577
- D. 856

55. The option(s) with only amphoteric oxides is(are)

- (a)  $Cr_2O_3$  BeO  $SnO_2$
- (b) Cr<sub>2</sub>O (1800 800)
- (d)  $ZnO_3$   $PbO_2$   $PbO_3$



ad

C2 +3

The 1<sup>st</sup>, 2<sup>nd</sup>, and the 3<sup>rd</sup> ionization enthalpies,  $I_1$ ,  $I_2$ , and  $I_3$ , of four atoms with atomic numbers n, n + 1, n + 2, and n + 3, where n < 10, are tabulated below. What is the value of n?

[Adv. 2020]

|        |                              |      | [**   |  |  |  |  |
|--------|------------------------------|------|-------|--|--|--|--|
| Atomic | Ionization Enthalpy (kJ/mol) |      |       |  |  |  |  |
| number | $I_{_1}$                     | I,   | $I_3$ |  |  |  |  |
| n      | 1681                         | 3374 | 6050  |  |  |  |  |
| n + 1  | 2081                         | 3952 | 6122  |  |  |  |  |
| n + 2  | 496                          | 4562 | 6910  |  |  |  |  |
| n + 3  | 738                          | 1451 | 7733  |  |  |  |  |

- 23. Both lithium and magnesium display several similar properties due to the diagonal relationship; however, the one which is incorrect is:
  - [Main 2017]
- (b) Both form soluble bicarbonates Both form nitrides

Both form basic carbonates

- (d) Nitrates of both Li and Mg yield NO<sub>2</sub> and O<sub>2</sub> on heating

- 22. The correct order of electron affinity is:
  - [Main Online April 15, 2018 (II)]

- (a) O > Q < Cl
- (b)  $\mathbb{P} > O > Cl$
- (c)  $F \Leftrightarrow Cl > O$
- (d) Cl > F > O

- The correct option with respect to the Pauling electronegativity values of the elements is:
- [Main Jan. 11, 2019 (II) Te > Se  $\nearrow$
- (b) Ga < Ge) (c) Si < Al > 9614 Be de Se 4 Al SI my Na Te Po Ga જી In

Tl

18. The correct order of the atomic radii of C, Cs, Al, and S is:

[Main Jan. 11, 2019 (I)]





(d) C < S < Cs < Al



- 7. In comparison to boron, berylium has:
- [Main April 12, 2019 (II
- (a) lesser nuclear charge and lesser first ionisation enthalpy.(b) greater nuclear charge and lesser first ionisation enthalpy.
- (c) greater nulear charge and greater first ionisation enthalpy.
- (d) lesser nuclear charge and greater first ionisation enthalpy.

- 15. The electron gain enthalpy (in kJ/mol) of fluorine, chlorine, bromine and iodine, respectively, are:
- (a) -296, -325, -333 and -349 (b) -349, -333, -325 and -296
- $(\sqrt{60}-333, -349, -325 \text{ and } -296)$
- (d) -333, -325, -349 and -296







- 8. In general, the property (magnitudes only) that shows an opposite trend in comparison to other properties across a period is:
- [Main Sep. 02, 2020 (I)]
- (a) Ionization enthalpy
- (b) Electron gain enthalm
- (c) Electron gain enthalpy(d) Atomic radius

- The five successive ionization enthalpies of an element are 800, 2427, 7. 3658, 25024 and 32824 kJ mol<sup>-1</sup>. The number of valence electrons in the element is:
- [Main Sep. 03, 2020 (II)]

(a) 5

(b) 4

(c) 3

(d) 2

- numbers and (104) atomic belong to, elements with The respectively: [Main Sep. 04, 2020 (I)] Group 11 and Group 4
- (b) Actinoids and Group 6
- Actinoids and Group 4) Group 6 and Actinoids

好54



H BCNOFNe Alsı PS CI Ar K ca Sc Ti V Cr Mn Fe Co Ni Cu Zm Ga Ge As Se Br Kr Na mg Rb Sr Y Zr Nb Mo To Ru Rh Pd Ag Cd In Sn Sb Te I Xe CS Ba da ty Ta W Re Os Ir Pt Au ty TI Pb Bi Po At Rn Fr Ra Ac Ry Db Sg Bh Hs Mt Ds Rg Cn

> Ce Br Nd Pm Sm tu Gd To Dy Ho Er Tm Yb du Th Pa U Np lu Am Cm Bk G Es fm Md No dr

### Dobexeiner's truads

$$-\frac{3}{2}$$

$$-\frac{3}{2}$$

$$-\frac{3}{2}$$

$$-\frac{3}{2}$$

$$-\frac{3}{2}$$

$$-\frac{3}{2}$$



### Newland's law of Octaves

H de Be B C N O
F Na mg Al &I P S
Cl K Ca.

at max



Eka-Alumbum Gallium (51a) Eka Boron Scandium Eka Silicon Sermenium Eka Mangenese => To

Al Ga B Sc Si Ge Mn Tc

Technetium (Tc)

## Drawbacks of Mendlew's Periodic Table

〇年光

- 1 hydrogen for Position
- 2 Position of isotopes
- 3 Wrong Pos. & elements

U Be In Au Pt



#### Modern Peruodic Table

- 1 Modern Perciodic Law
- 2 e conf
- 3 gf 18 column
- 4 hows- period- 7

#### Electronic configuration

1 Aufbouis Brinciple

monoeledronic system. - envyy (n)

$$4s < 3s = 8p < 3s = 3p = 3d < 4s = 4p = 4d = 4f <$$

multielectronic species - envyy - (n+P)

$$\partial_{S} S = \partial_{S} + \partial_{S} = \partial_{S}$$

12 < 22 < 27 × 32 × · · ·



2 Hund's rule of maximum multiplicity The subshells are first filled with the es of Same spin & then the pairing occurs

# multiplicity ///

#### 2/25/+1

exchange energy







#### Pauli's exclusion principle

no 2 es in an atom com house the same set of all the 4 03 No

1 H 
$$1s^{1}$$
 1
2 He  $1s^{2}$  1\[
3 \text{ A }  $1s^{2} a s^{1}$  1\[
1 \]
4 Re  $1s^{2} a s^{2}$  1\[
5 \text{ Re }  $1s^{2} a s^{2} a b^{1}$  1\[
6 \text{ C }  $1s^{2} a s^{2} a b^{2}$  1\[
7 \text{ N }  $1s^{2} a s^{2} a b^{3}$  1\[
1 \text{ IV } \text{

21 Sc 
$$[Ar] 4s^2 3d^2$$
22 Ti  $4s^2 3d^2$ 
23. V  $[Ar] 4s^2 3d^3$ 
24  $[Ar] 4s^2 3d^4$ 
25 Mn  $[Ar] 4s^2 3d^5$ 
26 fe  $[Ar] 4s^2 3d^6$ 
27. (a  $4s^2 3d^7$ 

$$\frac{28}{21} \frac{10}{20} \frac{10$$

26aar 412 2वीता री 4211 (20 Ru Rh Pd) Ag और पिटाई Rangoli de 3/12 number del Rg Au

SC Ti V Cr Mn fe co Ni cu 
$$\frac{\pi}{2}$$

Y  $\frac{\pi}{2}$  Nb No  $\frac{\pi}{2}$  Ru Rh  $\frac{\pi}{2}$  Ag  $\frac{\pi}{2}$ 

da  $\frac{\pi}{2}$   $\frac{\pi}{2$ 



symm.

hay filled conf

111

fully filled conf

3+3=6 exchanges



(n-1)d NS(n-a) Peruod 3rd Period SS 3p 4th Reviod 48 3d 4p 5th Reviod 1d 6p

jee main d 6th Poriod 6S 4/5d 6p

Tons Zm2+  $2m \rightarrow 15^2 a s^2 a p^6 3 s^2 3 p^6 4 s^2 (ad 10)$ 2m2+ 152 252 2p6 352 3p6 3d10 485 9: 8th poud - how many elements

$$8 + 16 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0 + 10 = 0$$

31. gp 1 - alkalı metals 32 gp2 - (ackalin) (earth) metals gf 18 - noble gans gf 17 - Phalogen - Salts Q4. gfo16 - chalcogoni - sorep Q5 gh17 - pnictogeny

 $Q_{II}$ .  $(e \longrightarrow (s^2)$ - P- block & Soft metals - weak metallic bond Bilvery 914. P-blocks - gf13 - gf18 - loute-postita ns2mb1-6 main quoup elements 8+P together S-block metals P-block non-metals

# metalloids Te Ge Sb B Se As & non-metal - (ly RT) - Br (1) nth shell - outumost shell (n-1) The show -> Penultimate show d stock (n-1)d (n-2)th shu - antipenutimate

- d block elements In, Cd, Hg+ Transition metal > in gnd state/excited -13910/402

 # IUPAC mames of elemenents with At no Z7100 nd n um u 109 Unniquadium 2 br b Ung, tu t Ununnilium 110 Quad Q Pent P Uun hex h Sept & ot o enn

# # Identification of Position & element

Block: Jast e- subshell - P-block

Period : \_\_\_\_ max. Priàbal a no \_\_\_ 4th period

group



$$gpno = (ne + np) + lo$$

#### Atomic mo

danthanum - 57

f-block (58 to 71) 90 to 103) actinium - 89



51 Poud 5 Block P 86 15



# effective nuclear charge



Shielding const







# Isoelectronic species



### \$ and p-block

in a poud (life to right)

• foxa g att of charge ↑

Size ≈



d and f-block

deft to sight in a period

· no of shell ~ Same

fatt T



#### &-block

- · Zeff T · no of shells!
- · FOA L

#### Top to bottom.



d-block

att T



- Atomic radius
  - -> 1 Covalent radius
    - metallic radius
    - Vandurwaal Had
    - Ionic Rad



#### Covalent Radius



Covalent bonded atom



dis b/w 2 Nuclui

$$\mathcal{H}_{H} = \frac{d}{2}$$



Metallic Rodius.



Metallic bonding e-sea model.

rumove (Kernel)

mutal nucleur + au es otherthan Valence e-





$$\text{Mutallic} = \underline{d}_{2}$$
Radius



# Vanderwaal radius mon-bonded atoms / inert gass





#### Ionic radius

$$A \qquad A^{+} \qquad A$$

$$Proton_{1} = \boxed{2} \quad 2 \qquad \boxed{2} \qquad \boxed{2}$$

$$e^{-} = \boxed{2} \quad 12 \qquad \boxed{2} \quad 13$$

$$A^{+} < A < A \qquad \boxed{A}$$





covalent << metallic << vandurwaal rad



#### factors - Atomic Radius

1 Zeff T Fath T dus 1 atomic Rad 1



#### TRENDZ

47 Be 7 B 7 C 7 N 7 O 7 F < Ne

ma period I to re

Zeff T

\*ip fatt T

no of shells a

at Rad I



# Tounds

Na K Rb

down the gf no. of shull T Zeff The Fate J 872 T



Tounds quoup 13 B<Al> Ga< In<Tl Asge T (3des) Poor shielding 4d (more Pes) Shielding TI

Trunds queup 19 C < SI < One < Sn < lb geoup 15 ha mge N < P < As < St < B. Sn 11

٠



Trundz d-block

```
Talalala (Talalala)
                                                    Ni
                               Mn
        45°3d° 45°3d° 45°3d° 45°3d° 45°3d° 45°3d° 45°3d° 45°3d°
452391
       Itox, de 1, d = Poor shieldur, Zyg 1 size I
         []]]]] []///h/] []//h/] []//h/]
        I to so, no of unpaired e metallic bond 1, atl 1, size to
```







#### Toundz.



4 devues

da Ce Be Not Pm Sm Fu Gd To Dy Ho For Tm 46 du

l to y no d fe T Poor shielding Zeff T no of shell same fatt T fize !

anthanoid Contraction.
Actinide Contraction



# Tonization energy

atom, ground state, Ganou isolated



Outermost e-



#### Successive I.E



#### factors < I.E

1 Zegg
Zegg 1
att T
TE. 1

2 obiget att 1 TE 1





hay/fully

IE N > 0

Trundz

$$di < Be > B < C < N > O < F < Ne$$
 $S' S^2 S^2 P' P^2 P^3 P^4 P^5 P^6$ 

d. to 9c Zy ↑ Size ↓ I.E ↑

di TBTBeTCTOTNTF< Ne



### Teunds

· down the gb · no of shell 1

· Zyot

· fatt 1 (dominating)

Size 1

· TE !

di > Na > K > Rb > G



# Wsv shortcut



Tounds

guoup 14

C > Si > Ge > (Sn > W)

C-Si-Ge->Sn< 26

- 4fe-

ghroup 15

N > P > As > S6 > B1





 $A(g) + e^{-} \longrightarrow A(g)$ 

Ganous isolated atom ground state

envyy ruleand & EA (

envyy sug, ER O





### Electron gain enthalpy

EGE

△Heg

Change in enthalpy when a garrow is lated atom gains an e-

$$fl + e^- \longrightarrow A^{-2} \xrightarrow{e^-} A^{-3}$$

energy ency 
$$\Delta H = \Phi$$
  $\Delta H = \Phi$ 



factors < lectron affinity

1 ZYBT atl TLERZ BT EAT

2 8130 1 att 1 12117 0 1 E.A.J. hay filled fully filled abuady stable criz 000 EA. L



$$|S^{2}a|^{2} \qquad |S^{2}a|^{2} \qquad |S^{2}a|^{2} \qquad |S^{2}a|^{2}$$



Trundz in a fund, +ve Ne Be

Ne < Be < N < B < & < C < O < F



(E.A)

# and & 3rd Percod





### Electronegativity









#### e neg - trund

- (P) I— & Say I fort
- Sign Sign To A J Conserve J

(force)



d-block Zys T fo A 1 enep 1 P-block ) 3/3 13 foa!





8r 2. a

3 8 T



enep UTN STC PTH





# amphoteur oride

Zando ho Be Al गाकर ब्युमाआ वर्षना सब आसानी से पाठाला मान लेंगे 8 4 6aax मार पिटेमी Be Af

Ga Cr Sn

+5 Sb As

Physical Marketing Sh

Marketin



Basic oxide

metal

MOB



1 metal/non-metal/metalloid

N modi aao Ahm

4 <u>metalloid</u> Lampho / acidii /





