BOUNCE BACK 2.0

JEE MAINS & ADVANCED ONE SHOT Hello N. Viang

TRIGONORETRIC S Marks (8 Marks)

NISHANT VORA

Nishant Vora

B.Tech - IIT Patna

- 7+ years Teaching experience
- Mentored 5 lac+ students
- Teaching Excellence Award

"Easy"

B^OunceBask

Join with us in Telegram

TELEGRAM CHANNEL

• t.me/unacademyatoms

COMPLETE NOTES AND LECTURES

• <u>tinyurl.com/unacademyatoms</u>

Unacademy **Subscription**

- **+** LIVE Polls & Leaderboard
- **+ LIVE Doubt** Solving
- **+ LIVE** Interaction

Performance Analysis

- Weekly Test Series
- DPPs & Quizzes

India's **BEST** Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the **BEST**

All-Star Crash Course 3.0 Batch

for JEE Main 2023

Batch highlights:

- 3-month crash course targeting 2023 JEE Main with all IIT JEE Top Educators from Unacademy
- Cover the entire syllabus at a quick pace for JEE Main & Advanced
- Enhance your JEE competitiveness

Enroll Now

Early Growth Batch

for Class 11 IIT JEE Main and Advanced 2025

Batch highlights:

- Classes by Top Educators who have trained Learners with single-digit ranks
- · Comprehensive Class 11 and 12 syllabus completion
- · Start early and prepare for JEE effectively
- Learn from Top online and offline Educators
- Top notch study material prepared by Top Educators

Enroll Now

Prashant Jain Mathematics

Amarnath Anand Mathematics

Nishant Vora Mathematics

Piyush Maheshwari Chemistry

Vijay Tripathi Chemistry

Sakshi Ganotra

Namo Kaul Physics

Mohit Bhargav Physics

Ajit Lulla Physics

(FREE) All India Test Series

A comprehensive Test Series for your JEE 2023/2024 preparation

- Physics, Chemistry and Mathematics Mock Tests
- JEE Main pattern test
- Detailed analysis along with solutions

Enroll Now

Trigonometric Equations

Examples of Trigonometric Equations

$$\sin\theta = \frac{1}{2}$$

$$\sqrt{\sin\theta=\frac{1}{2}}$$

$$2\sin x - \cos x = 3$$

Solution of Trigonometric Equations

PrincipalSolution

Principal Solution

$$\rightarrow PS \in [0, 2\pi)$$

$$PS \in [0,2\pi)$$

211

ETIL.

Principal Solution - Shortcut Method

111

$$\lim x = \frac{1}{2} \implies \boxed{x = \frac{11}{6}}$$

$$\frac{4-2}{1-c} = \frac{1}{1-c} = \frac{$$

Principal Solution - Shortcut Method

principal Solution - Shortcut Method
$$\sin x = -\frac{1}{2}$$

$$\frac{1}{4-1} \quad \text{dun} = \frac{1}{2} \quad \text{ext}$$

Ans Verify
$$din(\frac{747}{6})$$

$$= \dim \left(\pi + \frac{\pi}{6} \right)$$

$$= - \dim \frac{\pi}{6}$$

$$\frac{1}{\sqrt{2}} \frac{S}{\sqrt{2}} \frac{A}{\sqrt{2}} \frac{A}{\sqrt{2}$$

$$= \operatorname{din}\left(\pi + \frac{\pi}{6}\right)$$

$$= -\operatorname{din}\left[\pi + \frac{\pi}{6}\right]$$

Principal Solution - Shortcut Method

$$\tan x = -\frac{1}{\sqrt{3}}$$

$$4-1 \quad \tan x = \frac{1}{\sqrt{3}} \quad x = \frac{\pi}{6}$$

7

Principal Solution - Shortcut Method

#NVST

* General Solution

General Solution

$$sun \theta = Lun \propto \theta = n\pi + (-1)^n \propto n \in \mathcal{I}$$

$$\cos \theta = \cos \alpha \qquad \theta = 2n\pi \pm \alpha$$

$$tan\theta = tan\alpha$$
 $\theta = n\pi + \alpha$

General Solution

$$dun^2 \theta = dun^2 \propto 1$$

$$cos^2 \theta = cos^2 \propto 1$$

$$tan^2 \theta = tan^2 \propto 1$$

$$\theta = n\pi \pm \infty$$

General solutions

$\sin \theta = \sin \alpha$	⇒	$\theta = n\pi + (-1)^n \alpha$
$\cos \theta = \cos \alpha$	⇒	$\theta = 2n\pi \pm \alpha$
$\tan \theta = \tan \alpha$	\Rightarrow	$\theta = n\pi + \alpha$
$\sin^2 \theta = \sin^2 \alpha$	\Rightarrow	$\theta = n\pi \pm \alpha$
$\tan^2 \theta = \tan^2 \alpha$	⇒	$\theta = n\pi \pm \alpha$
$\cos^2 \theta = \cos^2 \alpha$	⇒	$\theta = n\pi \pm \alpha$

$$du^2\theta = \frac{1}{4}$$

$$din^2\theta = dun^2 \frac{\pi}{6}$$

$$\theta = n\pi \pm \frac{\pi}{6}$$

$$\pi \in \Xi$$

111 **General Solutions - Examples**

$$\sin x = -\frac{\sqrt{3}}{2}$$
Method (GS)

4-1 P.S A)

$$\frac{S-1}{2} \quad 1) \quad 4in \alpha = \frac{\sqrt{3}}{2} \quad \boxed{\alpha = \frac{\pi}{3}}$$

$$\frac{S}{2} \quad \boxed{\alpha = \frac{\pi}{3}}$$

General Solutions - Examples

$$\sin^2 x = \frac{1}{4}$$

$$\frac{4}{\sin^2 x} = \left(\frac{1}{2}\right)^2$$

$$\sin^2 x = \sin^2 \frac{\pi}{6}$$

$$\frac{1-2}{2} \quad n = n + \frac{\pi}{6}$$

General Solutions - Examples

General Solutions - Examples

$$\frac{3}{\cot x = -1}$$

$$tansc = -1$$

a)
$$ton\alpha = 1$$
 $\alpha = \frac{\pi}{4}$

a) $sin \alpha = 1$ and $sin \alpha = 1$

$$tanx = tan(31)$$

X= NT + 31

Number of Solution

Find Number of Solutions:

111

$$\sin 4x = -\frac{1}{2} \ln x \in [0, 2\pi]$$

$$din(4\pi) = -\frac{1}{2}$$
 $n \in [0,2\pi]$ No of $dol^n = 8$

$$x=0 \qquad \text{div}(4\pi) = \frac{1}{2} \qquad \forall x \in [0,2\pi] \qquad [100 \text{ of aloc} - 8]$$

Find Number of Solutions:

111

 $\sec 3x = 2 in x \in [0, \pi]$

$$\sec 3x = 2 \text{ in } x \in [0, \pi]$$

$$\cos(3\pi) = \frac{1}{2} \quad \pi \in [0, \pi]$$

$$(68(3n) = \frac{1}{2} \qquad 3n \in [0,3\pi]$$

$$\cos(3\pi) = \frac{1}{2} \qquad 5x \in [0, 3\pi]$$

$$\cos(3\pi c) = \frac{1}{2} \qquad 3\pi \in [0, 3\pi]$$

$$\cos \theta = \frac{1}{2} \qquad \theta \in [0, 3\pi]$$

[JEE Adv. 2015]

The number of distinct solutions of the equation

$$\frac{5}{4}\cos^2 2x + \cos^4 x + \sin^4 x + \cos^6 x + \sin^6 x = 2$$
in the interval $[0, 2\pi]$ is

$$\frac{3}{4}\cos^2 2x + \cos^4 x + \sin^4 x + \cos^6 x + \sin^6 x = 2$$
in the interval $[0, 2\pi]$ is

in the interval
$$[0, 2\pi]$$
 is
$$\frac{5}{4} \cos^2 2\pi + 4 - 2 \sin^2 \pi \cos^2 \pi + 4 - 3 \sin^2 \pi \cos^2 \pi$$

 $\frac{5}{4} \log^2 2\pi - \frac{5}{4} (4 \sin^2 \pi \cos^2 \pi) = 0$

 $\frac{5}{4}\sqrt{\log^2 2n - \sinh^2 2n} = 0$

$$\frac{5}{4}$$
 cos $4\pi = 0$

$$\Rightarrow \cos 4\pi = 0 \quad \pi \in [0,2\pi] \quad \text{No of Sol} = 8$$

$$\Rightarrow \cos 4\pi = 0 \quad \pi \in [0,2\pi] \quad [\text{No of sol} = 8]$$

Cos
$$4x = 0$$
 $4x \in [0, 8\pi]$

Los $\theta = 0$ $\theta \in [0, 8\pi]$

Type 1: Factorization/ Quadratic Form

Solve $(2 \sin x - \cos x) (1 + \cos x) = \sin^2 x \ln [0, 2\pi].$

$$2 + \cos \alpha = 1 + \cos \alpha = 0$$

2 lum - cosn - 1 + cosn = 0

2 lum = 1

1+ cosn = 0

lim =
$$\frac{1}{2}$$
 $\sqrt{5}$
 $\sqrt{5}$
 $\sqrt{5}$
 $\sqrt{5}$
 $\sqrt{5}$
 $\sqrt{5}$
 $\sqrt{5}$

Sum of $\sqrt{5}$
 $\sqrt{5}$

[JEE M 2021]

If $\sqrt{3}\cos^2 x = (\sqrt{3} - 1)\cos x + 1$, the number of solutions of the given equation when $x \in \left[0, \frac{\pi}{2}\right]$ is

If
$$\sqrt{3}\cos^2 x = (\sqrt{3} - 1)\cos x + 1$$
, the number of solutions of the given equation when $x \in \left[0, \frac{\pi}{2}\right]$ is
$$\sqrt{3}\cos^2 x - \sqrt{3}\cos x + \cos x - 1 = 0$$

- Cosn = 1 OR Cosn = $\frac{-1}{\sqrt{5}}$

$$\sqrt{3} \cos^2 n - \sqrt{3} \cos n + \cos n - 1 = 0$$

$$\sqrt{3} \cos n \left(\cos n - 1 \right) + 1 \left(\cos n - 1 \right) = 0$$

Let
$$4 + (-8) = -4$$

$$S = \{\theta \in [0, 2\pi] : 8^{2\sin^2\theta} + 8^{2\cos^2\theta} = 16\}. \text{ Then}$$

82 tin20 = 8

[JEE M 2022]

$$\underbrace{\frac{4}{n(S)} + \sum_{\theta \in S} \left(\sec\left(\frac{\pi}{4} + 2\theta\right) \csc\left(\frac{\pi}{4} + 2\theta\right) \right)}_{\theta \in S}$$

$$\Rightarrow t + \frac{64}{t} = 16$$

$$\Rightarrow t^2 - 16t + 64 = 0$$

equal to:
$$8^{2 \text{ lin}^2 \theta} +$$

$$\frac{4}{n(S)}$$
 + equal t

A. 0

$$3^{rd}/4^{rd}$$

$$3^{rd}/4^{rd}$$

$$3^{rd}/4^{rd}$$

$$3^{rd}/4^{rd}$$

$$3^{rd}/4^{rd}$$

$$4^{rd}$$

$$6^{rd}$$

$$6^{rd}$$

$$4^{rd}$$

$$6^{rd}$$

$$6^{rd}$$

$$7^{rd}$$

$$6^{rd}$$

$$7^{rd}$$

$$7^$$

$$S = \left\langle \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \right\rangle \qquad \underbrace{n(s) = 4}_{-2} \qquad \underbrace{-2 \times 4}_{-2} = \underbrace{-8}_{-8}$$

$$\Rightarrow \leq \frac{2}{665} \left(\frac{2}{6840} \right)$$

If the <u>sum of solutions</u> of the system of equations $2\sin^2\theta - \cos 2\theta = 0$ and $2\cos^2\theta + 3\sin\theta = 0$ in the interval [0, 2π], then k is equal to__.

 $2 \cos^2 \theta + 3 \tan \theta = 0$

$$2 \sin^2 \theta = \cos 2\theta$$

$$2 \sin^2 \theta = 1 - 2 \sin^2 \theta$$

$$4 \sin^2 \theta = \frac{1}{4}$$

$$4 \sin \theta = \frac{1}{2} \cos \theta$$

$$2 \sin^2 \theta = \frac{1}{2} \cos \theta$$

$$2(1-4n^{2}0) + 3 den0 = 0$$

$$2 den^{2}0 - 3 den0 - 2 = 0$$

$$2 den^{2}0 - 4 den0 + den0 - 2 = 0$$

$$(2 den0 + 1)(den0 - 2) = 0$$

$$den0 = -\frac{1}{2} \text{ or } \chi$$

[JEE M 2022]

$$den\theta = \frac{-1}{2} \quad \left(0, 2\pi\right)$$

dum = 371

$$\frac{d-1}{d} = \frac{1}{2} \quad \alpha = \frac{1}{6}$$

$$\frac{d-2}{d} = \frac{1}{6}$$

$$\frac{d-2}{d} = \frac{1}{6}$$

$$\frac{d-3}{d} = \frac{1}{6}$$

Q

If $\underline{S} = \{\theta \in (0, 2\pi) : (7\cos^2\theta - 3\sin^2\theta - 2\cos^22\theta = 2)\}$. Then, the sum of roots of all the equations $\underline{x}^2 - 2(\tan^2\theta + \cot^2\theta) \times (\cos^2\theta + 6\sin^2\theta = 0)$

is_
$$\frac{1}{1+\frac{6820}{2}} - \frac{3(1-\frac{6820}{2})}{2} - \frac{2(68^{2}20)}{2} = 2$$

$$\Rightarrow \frac{1}{1+\frac{6820}{2}} - \frac{3(1-\frac{6820}{2})}{2} - \frac{2(6820)}{2} = 2$$

$$\Rightarrow \frac{1}{1+\frac{6820}{2}} - \frac{2(6820)}{2} = 2$$

[JEE M 2022]

(0,2T)

(68(20) = 0 $(6,4\pi)$

$$S = \sqrt{\frac{11}{4}}, \frac{311}{4}, \frac{511}{4}, \frac{711}{4}$$

Sum of Root =
$$2(\tan^2 0 + \cot^2 0)$$

Let
$$\underline{S} = \left\{ \theta \in [-\pi, \pi] - \left\{ \pm \frac{\pi}{2} \right\} : \underline{\sin \theta \tan \theta} + \tan \theta = \underline{\sin 2\theta} \right\}.$$

If
$$T = \sum_{n=0}^{\infty} \cos 2\theta$$
, then $T + \underline{n(S)}$ is equal

A.
$$7+\sqrt{3}$$
 $\tan\theta \left(\sin\theta + 1 \right) = \frac{2 \tan\theta}{1 + \tan^2\theta}$

B. 9

D. 10

$$\frac{1}{\sqrt{1 + \tan^2 \theta}}$$

$$\frac{1}{\sqrt{1 + \tan^2 \theta}}$$

$$du\theta + 1 = 2 (l - dun^2 \theta)$$

$$0 = 1 - \theta$$

$$0 = 1 - \theta$$

$$d = 1 - d$$

$$6 = 1 - \theta n$$

$$0 = 1 - 0$$
 $0 = 1 - 0$

[JEE M 2022]

1+1+1++++

= (69(-21) + (690 + (6921) + (691) + (6951) +

$$\frac{\left[-\pi, \Pi\right] - \frac{1}{2}\right]}{\sin \theta = 0} \quad \sin \theta = -1 \quad S = \left\{-\pi, 0, \pi, \frac{\pi}{6}, \frac{s\pi}{e}\right\}$$

$$tan\theta = 0 \mid sun\theta = \frac{1}{2} \mid sun\theta = -1 \quad S = \left\langle -\pi, 0, \pi, \frac{\pi}{6}, \frac{s\pi}{8} \right\rangle$$

$$tan\theta = 0 \quad tan\theta = \frac{1}{4} \quad tan\theta = -1$$

$$S = \left\langle -\pi, 0, \pi, \frac{\pi}{6}, \frac{\pi}{6} \right\rangle$$

$$-\pi, 0, \pi \quad \exists f, \xi \pi \quad No \quad Sol^{n}$$

$$tan\theta = 0 \quad tan\theta = \frac{1}{2} \quad tan\theta = -1 \quad S = \left\langle -\pi, 0, \pi, \frac{\pi}{6}, \frac{5\pi}{6} \right\rangle$$

T= 60820

number of elements in the set S =The

$$\{\theta \epsilon \, \underline{[-4\pi, 4\pi]} : \underline{3 \, \cos^2 2\theta + 6 \cos 2\theta - 1}$$

 $10\cos^2\theta + 5 = 0$ is 32

$$\cos^2\theta + 5 = 0$$
} is _____. [JEE M 2022]

$$369^{2}20 + 66920 - 5(269^{2}0) + 5 = 0$$

 $369^{2}20 + 66920 - 5(1+6920) + 5 = 0$
 $369^{2}20 + 6920 = 0$

$$(6820 (3(6820 + 1) = 0)$$

$$\cos 2\theta = 0 \qquad \cos 2\theta = \frac{-1}{3}$$

Cos
$$2\theta = 0$$
 $\theta \in [-4\pi, 4\pi]$
Cos $x = 0$ $x \in [-8\pi, 8\pi]$

$$\frac{2\times8}{=(16)}$$

$$\cos 2\theta = \frac{-1}{3} \quad 2\theta \in [-8\pi, 8\pi]$$

$$\cos \pi = -\frac{1}{3} \quad \pi \in [-8\pi, 8\pi]$$

(os20 = =

 $\Theta \in [-4\pi, 4\pi]$

a sinx + 6 cosx = c

355

Type – 2

*

 $a \sin x + b \cos x = c$

Type 2

 $a \sin x + b \cos x = c$

Method

⇒ divide by \\a^2+5² both dedes.

Find general solution of $\sin x + \cos x = \sqrt{2}$.

N-# = 5411 70

$$\# \log(x-\frac{\pi}{4}) = \cos 0$$

· \n = 2hTi + II n + I

$$\int \frac{1}{\sqrt{1}} d\ln n + \frac{1}{\sqrt{2}} \cos n = \sqrt{2}$$

$$\int \frac{1}{\sqrt{2}} d\ln n + \frac{1}{\sqrt{2}} \cos n = \sqrt{2}$$

3hT 士 <

 $MII + (-I)_{D} \propto$

Find general solution of $\sqrt{3} \cos x + \sin x = 2$.

Find general solution of
$$\sqrt{3} \cos x + \sin x = 2$$
.

 $\chi - \frac{1}{4} = 5 \mu \pi$

x=2ht + 1

$$\sqrt{\left(\sqrt{3}\right)^2}$$

$$\cos \frac{\pi}{6} \cos n + \sin \frac{\pi}{6} A \sin n = 1$$

$$\cos \frac{\pi}{6} \cos n + \sin \frac{\pi}{6} \sin n = 1$$

$$\cos (n - \frac{\pi}{6}) = \cos 0$$

$$\sqrt{\frac{3}{2}} \cos x + \frac{1}{2} \tan x = \frac{2}{2}$$

Find the general solutions of equation $\sin x + \cos x = 3/2$

Find the general solutions of equation
$$\sin x + \cos x = 3/2$$

$$\frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x = \frac{3}{2\sqrt{2}}$$

$$\cos\left(\pi - \frac{\pi}{4}\right) = \frac{3}{2\sqrt{2}}$$

The number of integral values of 'k' for which the equation

$$3\sin x + 4\cos x = k + 1 \text{ has a solution, } k \in R \text{ is}$$

$$3 \sin x + 4 \cos x = k + 1 \text{ has a solution, } k \in R \text{ is}$$

$$\left[-\sqrt{a^2 + b^2}, \sqrt{a^2 + b^2} \right]$$

$$+b^{2}$$
, $\sqrt{a^{2}+b^{2}}$
 $+b^{2}$, $\sqrt{a^{2}+b^{2}}$

Consider the following lists:

List-I

(I)
$$\left\{ x \in \left[-\frac{2\pi}{3}, \frac{2\pi}{3} \right] : \cos x + \sin x = 1 \right\}$$

$$(x)$$
 $\left\{ x \in \left[-\frac{5\pi}{18}, \frac{5\pi}{18} \right] : \sqrt{3} \tan 3x = 1 \right\}$

(III)
$$\left\{ x \in \left[-\frac{6\pi}{5}, \frac{6\pi}{5} \right] : 2\cos(2x) = \sqrt{3} \right\}$$

(IV)
$$\left\{x \in \left[-\frac{7\pi}{4}, \frac{7\pi}{4}\right] : \sin x - \cos x = 1\right\}$$

List-II

(Q) has three elements
$$=\frac{1}{\sqrt{3}}$$

(P) has two elements =
$$-\tan \frac{5\pi}{6}$$
 [JEE Adv. 2022]

$$tansx = \frac{1}{\sqrt{3}}$$
 $x \in \left[-\frac{ST}{18}, \frac{ST}{18}\right]$

$$tan(0) = \frac{1}{12}$$
 $0 \in \left[-\frac{5\pi}{6}, \frac{5\pi}{6}\right]$

The correct option is:

$$(X)$$
 (I) \rightarrow (P); (II) \rightarrow (S); (III) \rightarrow (P); (IV) \rightarrow (S)

(B) (I)
$$\rightarrow$$
 (P); (II) \rightarrow (P); (III) \rightarrow (T); (IV) \rightarrow (R)

(C) (I)
$$\rightarrow$$
 (Q); (II) \rightarrow (P); (III) \rightarrow (T); (IV) \rightarrow (S)

$$(I) \rightarrow (Q); (II) \rightarrow (S); (III) \rightarrow (P); (IV) \rightarrow (R)$$

$$\frac{1}{\sqrt{2}} \int_{1/2}^{1/2} \pi = \frac{1}{\sqrt{2}} \quad \pi \in \left[-\frac{7\pi}{4}, \frac{7\pi}{4}\right]$$

$$\frac{1}{3} \lim_{n \to \infty} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}} \lim_{n \to \infty} \frac{1}{\sqrt{2}}$$

$$\frac$$

$Jun(\theta) = \frac{1}{12} \theta \in \left[-2\pi, 3\pi\right]$
$\frac{-2\pi}{3\pi}$

- 1 QE-factorise
 2 asunx +6 cosx = C

Type – 3
(Convert Sum to Product)

Convert Sum to Product

[JEE M 2019]

If $0 \le x < \frac{\pi}{2}$, then the number of values of x for which

$$\sin x - \sin 2x + \sin 3x = 0 \text{ is } \alpha \in \left[0, \frac{\pi}{2}\right]$$

linery (26871-1)=0

Linzx=0 OR LOSSe=1/,

A. 3
B. 1
C. 4
Jinn + Jin 372 —
$$Jin(27) = 0$$
1 D. 2

2 din(200) (00 (00) - din 200 = 0

$$\frac{\sin x - \sin 2x + \sin 3x = 0}{\sin x - \sin 2x} = 0$$
A. 3
B. 1
Sinn + Lin 3n, -Lin(2n) = 0

$$sun2n = 0 \quad \alpha \in \left[0, \frac{\pi}{2}\right] \quad cosn = \frac{1}{2} \quad \alpha \in \left[0, \frac{\pi}{2}\right]$$

$$\lim_{n \to \infty} 2n = 0 \quad 2n \in [0, \pi]$$

$$\lim_{n \to \infty} 3n = 0 \quad 0 \in [0, \pi]$$

$$\frac{1}{2}$$

[JEE M 2021]

If the sum of values of x in $[0, 2\pi]$, for which

$$\sin x + \sin 2x + \sin 3x + \sin 4x = 0, \text{ is equal to}$$
A. 8π
B. 11π
C. 12π

(D)

A.
$$8\pi$$
B. 11π
C. 12π
2 $\sin(\frac{5\pi}{2})\cos(\frac{3\pi}{2}) + 2 \sin(\frac{5\pi}{2})\cos(\frac{\pi}{2}) = 0$

 $\frac{\kappa}{2} \in [0, \pi]$

$$\chi \in [0, 2\Pi]$$

$$\chi \in [0, 2\Pi]$$

$$\chi \in [0, 2\Pi]$$

$$\zeta = 0$$

$$\zeta$$

(os (x) = 0

 $\pi = \mathbf{x}$

Sum of Sol" =) 9 TT

 $\frac{5}{2}x \in [0,5T]$

The positive integer value of
$$n > 3$$
 satisfying the equation

[JEE Adv. 2011]

$$\frac{1}{\sin\left(\frac{\pi}{m}\right)} = \frac{1}{\sin\left(\frac{2\pi}{m}\right)} + \frac{1}{\sin\left(\frac{3\pi}{m}\right)} \text{ is } \qquad \text{ fund } \Rightarrow \text{ Product}$$

$$\frac{1}{\sin\left(\frac{\pi}{n}\right)} = \frac{1}{\sin\left(\frac{2\pi}{n}\right)} + \frac{1}{\sin\left(\frac{3\pi}{n}\right)} \text{ is}$$

$$\frac{1}{\sin\left(\frac{\pi}{n}\right)} - \frac{1}{\sin\left(\frac{3\pi}{n}\right)} = \frac{1}{\sin\left(\frac{2\pi}{n}\right)}$$

din (311)

$$2 \cos\left(\frac{2\pi}{n}\right) \sin\left(\frac{\pi}{n}\right) = \frac{1}{4\pi (2\pi)}$$

 $din\left(\frac{4\pi}{2}\right) = din\left(\frac{3\pi}{2}\right)$

$$\frac{2 \left(\cos\left(\frac{2\pi}{n}\right) \operatorname{din}\left(\frac{n}{n}\right)}{\operatorname{din}\left(\frac{3\pi}{n}\right)} = \frac{1}{\operatorname{din}\left(\frac{2\pi}{n}\right)}$$

$$\operatorname{din}\left(\frac{4\pi}{7}\right) = \operatorname{din}\left(\frac{3\pi}{7}\right)$$

$$\frac{\sin\left(\frac{3\pi}{n}\right)}{\sin\left(\frac{3\pi}{n}\right)} = \sin\left(\frac{3\pi}{n}\right)$$

$$\frac{\sin\left(\frac{4\pi}{n}\right)}{\sin\left(\frac{3\pi}{n}\right)} = \sin\left(\frac{3\pi}{n}\right)$$

$$\frac{\sin\left(\frac{4\pi}{n}\right)}{\sin\left(\frac{3\pi}{n}\right)} = \sin\left(\frac{3\pi}{n}\right)$$

$$\frac{\sin\left(\frac{4\pi}{n}\right)}{\sin\left(\frac{3\pi}{n}\right)} = \sin\left(\frac{3\pi}{n}\right)$$

$$\frac{2 \cos(\frac{2\pi}{n}) \sin(\frac{\pi}{n})}{\sin(\frac{\pi}{n}) \sin(\frac{3\pi}{n})} = \frac{1}{\sin(\frac{2\pi}{n})}$$

$$\sin(\frac{4\pi}{n}) \sin(\frac{3\pi}{n}) = \sin(\frac{3\pi}{n})$$

Type – 4 (Convert Product to Sum)

Convert Product into Sum

$$\sin 3\theta = 4 \sin \theta \cdot \sin 2\theta \cdot \sin 4\theta$$

$$sun30 = 4 sun \theta sun (30 - 0) sun (30 + 0)$$

$$\Rightarrow \underline{\text{Jung}} = 4 \text{ In} \theta \left(\overline{\text{Jun}^2 30} - \overline{\text{Jun}^2 0} \right)$$

$$In(A-B)\cdot In(A+B) = In^2A - In^2B$$

$$en^2 \theta$$

Number of solutions of the trigonometric equation in $[0, \pi]$,

Sum ± cosx &

> Type-5

Sunn + Cosn = Sunn Cosn +2 Method

 $f(\sin x \pm \cos x, \sin x \cos x)$

(i) Equations of the form P ($\sin x \pm \cos x$, $\sin x$. $\cos x$) = 0, can be solved by the substituting $\cos x \pm \sin x = 1$

(ii) Many equations can be solved by introducing a new variable e.g. consider the equation $\sin^4 2x + \cos^4 2x = \sin 2x$. $\cos 2x$

$$\Rightarrow$$
 $(sun + (\omega_3 n)^2 = t^2$

$$\frac{1}{\text{durn cosn}} = \frac{t^2 - 1}{1}$$

$$\Rightarrow 1 + 2 (\frac{1}{2}) + 2 = \frac{1}{2} + 2$$

Q.E

Find general value of x satisfying the equation $\sin^4 2x + \cos^4 2x = \sin 2x \cos 2x$.

$$2\left(1-2\sin^2 2\pi \cos^2 2\pi = \sin^2 n\cos^2 2\pi\right)$$

$$\Rightarrow$$
 2 - $\sin^2 4x = \sin 4x$

$$4n + len4n - 2 = 0$$

$$(din4x+2)(deh4x-1)=0$$

$$deh4x=-2 \quad din4x=1$$

LHS = RHS [-2,2] [2,8] $\frac{\text{LHS}=2 \text{ RHS}=2}{\text{HS}=2}$ Using Range of Functions

Solving equations with the use of boundedness of the function.

Remember:-

$$-1 \le \sin x \le 1$$
, $-1 \le \cos x \le 1$, $\tan x \in R$, $\cot x \in R$.
 $|\csc x| \ge 1$, $|\sec x| \ge 1$.

Most 45 Solve for x: $\cos x + \cos 2x + \cos 3x = 3$ [-1,] [-1,1] [-1,1]

 $\mathcal{X} = 2n\pi$

10,211, 411, 211, 811, 9 ····

o, to, ett, ett, o,

-: N = NT

GSE JUM NA SMUN

(0,211,5/11,611)

Unacademy Atoms

[JEE M 2019]

All the pairs (x, y) that satisfy the inequality

$$2\sqrt{\sin^2 x - 2\sin x + 5} \frac{1}{2^{x \sin^2 y}} \le 1$$
 also satisfy the equation:

1)
$$2|\sin x| = 3\sin y$$
 (2) $2\sin x = \sin y$
3) $\sin x = 2\sin y$ (4) $\sin x = |\sin y|$

$$\frac{1}{n^2y}$$

$$\frac{1}{\sin y} = 1$$

$$\frac{1}{\sin y} = 1$$

[JEE M 2021]

The number of solutions of $\sin^7 x + \cos^7 x = 1$, $x \in [0, 4\pi]$ is equal

0

S 801

7 = 0, X, 2T1, 37, 4T1

infinitely many solutions

- luna (-2 cosza + 4 losa) = 3
- $-2(2687a-1)+4698n=\frac{3}{4098}$
- three solutions [JEE Adv. 2014] -2 608 22 sinn + 2 sin2n = 3 one solution no solution -2 Cos2n Junn + 4 Junn Cosn = 3

For $x \in (0, \pi)$, the equation $\sin x + 2\sin 2x - \sin 3x = 3$ has

$$-1-465^2n+4608x+3=3608ecn$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[-6,3]$$

$$[$$

(Root wale sawal)

* Type - 7

$$f(x) = \sqrt{\varphi(x)}$$

Solution of trigonometric equation of the form
$$f(x) = \sqrt{\varphi(x)}$$

(i)
$$f(x) \ge 0$$
, $\varphi(x) \ge 0$

(ii)
$$f^2(x) = \varphi(x)$$

Hyert

Solve for x, $\sin x = \sqrt{1 - \cos x}$ in $x \in [0, 2\pi]$

Solve for x,
$$\sin x = \sqrt{1 + \cos x}$$
 in $x \in [0, 2\pi]$

$$4un^2n = 1 - \cos n$$

 $(1 - \cos n)(1 + \cos n) = (1 - \cos n)$

★ Type - 8 Log wale Questions

[JEE M 2020]

The number of distinct solutions of the equation,

2 dun (000) = 1x2

linzx = =

$$\log_{\frac{1}{2}} |\sin x| = 2 - \log_{\frac{1}{2}} |\cos x|$$
 in the interval $[0, 2\pi]$, is _____

$$\frac{\sqrt{2}}{2}$$

$$l_{na} |sum | + log |cosx| = 2$$

$$\log_{\frac{1}{2}} |\operatorname{dum}| + \log_{\frac{1}{2}} |\cos x| = 2$$

$$\log_{\frac{1}{2}} |\operatorname{dum}| |\cos x| = 2$$

$$|a| |b| = |ab|$$

$$\log_{\perp} |\operatorname{sum}| + \log_{\perp} |\cos x| = 2$$

$$|\Delta u = 2$$

$$dun2\pi = \pm \frac{1}{2} \qquad \pi \in [0,2\pi]$$

$$sin(2\pi) = \pm \frac{1}{2} \quad 2\pi \in [0, 4\pi]$$

$$\Rightarrow sin(\theta) = \pm \frac{1}{2} \quad \theta \in [0, 4\pi]$$

[JEE M 2021]

If for
$$x \in \left(0, \frac{\pi}{2}\right)$$
, $\log_{10} \sin x + \log_{10} \cos x = -1$ and
$$\log_{10}(\sin x + \cos x) = \frac{1}{2}(\log_{10} n - 1)$$
 n > 0 then the value of n is

A. 20
$$A. 20$$

 $\log \left(\sin x + (\cos x)^2 = \log \pi - \log 10 \right)$

 $\left(1+2 \lim \cos x\right) = \log \left(\frac{n}{10}\right)$

A. 20
B. 12
$$C. 9$$
 $log_{10}(sunn cosn) = -1$

/ A. 20		
B . 12	log (link cosk) = -1	
C . 9	700	
O . 3		
D. 16		
	_	

$$1 + 2 \times \frac{1}{10} = \frac{n}{10}$$

The number of solutions of equation $x + 2 \tan x = \frac{\pi}{2}$ in the interval $[0,2\pi]$ is :

[JEE M 2021]

Q

The number of solutions of $|\cos x| = \sin x$, such that $-4\pi \le x \le 4\pi$ is

- A. 4
- **B**. (
- 2
- D. 12

$$[-4\pi,4\pi] \rightarrow 2\times4$$

The number of solutions of the equation $2\theta - \cos^2\theta + \sqrt{2} = 0$ R is

$$y = 20 + \sqrt{2}$$
 $20 + \sqrt{2} = 605^{2}0$ $(0, \sqrt{2})$ $y = 2x + \sqrt{2}$

[JEE M 2022]

The number of solutions of the equation $(\sin^2 x) = \cos^2 x$ in the interval

$$\frac{M-1}{4 \text{ time} = \text{Ces}^2 n}$$

$$\sqrt{5} \approx 2.2$$

$$\sqrt{3} \approx 1.7$$

$$sinx = -1 \pm \sqrt{5}$$
 $sinx = -1.6$

[JEE M 2022]

PYQs

 $\sin 2\theta = \cos 4\theta$ is

 $\theta = \pi + \pi \kappa = \theta$

60 = (2n+1)T

The number of values of θ in the interval,

tano = cotso

 $tan\theta = tan\left(\frac{1}{2} - S\theta\right)$

that $\theta \neq \frac{n\pi}{5}$ for n = 0, ± 1 , ± 2 and $\tan \theta = \cot 5\theta$ as well as

りこし

12

N=-1

0 = (2n+1)T

such

 $\Theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

[JEE Adv. 2010]

$$d_{11}20 = 00240$$

 $\cos\left(\frac{\pi}{2}-2\theta\right)=\cos4\theta$ n=0 n=1 $\gamma = -2$ 71=2

 $\frac{\pi}{2} - 2\theta = 2n\pi \pm 40$

0 É (

0 = 2N11+40	$\frac{\pi}{2}$ - 20 = 2NT - 40	, — ,	06(-	4,21
9) = 17NS		$ \eta = 0 \left(-\frac{1}{4} \right) $	N=-1	- <u>st</u> X
-4n)TT = 0	$\theta = (4n-1)\pi$	N=1 3T		4 /
15	0 = 4	1		

[JEE Adv. 2016]

Let
$$S = \left\{ \underline{x \in (-\pi, \pi)} : \underline{x \neq 0, \pm \frac{\pi}{2}} \right\}$$
. The sum of all distinct solutions of the equation $\sqrt{3}$ sec $x + \text{cosec } x + 2(\tan x - \cot x) = 0$ in the set S is equal to

(a)
$$-\frac{7\pi}{9}$$

$$\frac{3\pi}{9}$$

$$\frac{5\pi}{9}$$

$$\frac{5\pi}{2}$$

$$-\frac{2}{9}$$

$$-\frac{2\pi}{9}$$

$$-\frac{27}{9}$$

$$2\ell \in (-\pi, \pi) = \left(\frac{-9\pi}{9}, \frac{9\pi}{9}\right)$$

$$2\ell \in (-\pi, \pi) = \left(\frac{-9\pi}{9}, \frac{9\pi}{9}\right)$$

$$2\ell \in (-\pi, \pi) = \left(\frac{-9\pi}{9}, \frac{9\pi}{9}\right)$$

$$\lim_{\frac{\pi}{3}} \frac{\pi}{3} = \lim_{\frac{\pi}{3}} \frac{\cos \pi}{3}$$

$$\lim_{\frac{\pi}{3}} \frac{\pi}{3} = \lim_{\frac{\pi}{3}} \frac{\pi}{3$$

$$N=1 - \frac{7\pi}{3} \times n = 1 + \frac{7\pi}{9} \times n = 1 + \frac{7\pi}$$

$$\lim_{3 \to \infty} \frac{1}{4} + \lim_{3 \to \infty} \frac{1}{4} + \lim_{3 \to \infty} \frac{1}{4} = \lim_{3 \to \infty} \frac{1}{4} + \lim_{3 \to \infty} \frac{1}{4} = \lim_{3 \to \infty} \frac{1}{4} =$$

TELEGRAM CHANNEL

t.me/unacademyatoms

COMPLETE NOTES AND LECTURES

tinyurl.com/unacademyatoms

LIVE Class Environment

- **+** LIVE Polls & Leaderboard
- **LIVE Doubt** Solving
- **+ LIVE** Interaction

Performance Analysis

- Weekly Test Series
- DPPs & Quizzes

中India's BEST Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the **BEST**

4

All-Star Crash Course 3.0 Batch

for JEE Main 2023

Batch highlights:

- 3-month crash course targeting 2023 JEE Main with all IIT JEE Top Educators from Unacademy
- · Cover the entire syllabus at a quick pace for JEE Main & Advanced
- Enhance your JEE competitiveness

Enroll Now

Early Growth Batch

for Class 11 IIT JEE Main and Advanced 2025

Batch highlights:

- Classes by Top Educators who have trained Learners with single-digit ranks
- · Comprehensive Class 11 and 12 syllabus completion
- · Start early and prepare for JEE effectively
- Learn from Top online and offline Educators
- Top notch study material prepared by Top Educators

Enroll Now

Prashant Jain Mathematics

Amarnath Anand Mathematics

Nishant Vora Mathematics

Piyush Maheshwari Chemistry

Vijay Tripathi Chemistry

Sakshi Ganotra

Namo Kaul Physics

Mohit Bhargav Physics

Ajit Lulla Physics

All India Test Series

A comprehensive Test Series for your JEE 2023/2024 preparation

FREE

🗎 November 6, 13, 20 and 27

- Physics, Chemistry and Mathematics Mock Tests
- JEE Main pattern test
- · Detailed analysis along with solutions

Enroll Now

Step 1

Step 2

OFFLINE (online) NVLIVE

