$i \cap 1 G E B=1$

 N.ViansEOUNOWS
Zunacademy

Nishant Vora

B.Tech - IIT Patna

\square 7+ years Teaching experience
$\square \quad$ Mentored 5 lac+ students
$\square \quad$ Teaching Excellence Award
\# BOunceBaok

Join with us in Telegram

TELEGRAM CHANNEL

- t.me/unacademyatoms

COMPLETE NOTES AND LECTURES

- tinyurl.com/unacademyatoms Subscription

LIVE Class Environment
↔ LIVE Polls \& Leaderboard
↔ LIVE Doubt Solving
ヶ LIVE Interaction

Performance Analysis
↔Weekly Test Series
↔ DPPs \& Quizzes

Unacademy Subscription

HINDI
Igneous Batch for JEE Advanced \& Olympiads 2021
Started on Jul 7
Nishant Vora and 1 more

hinol
Evolve Batch Course for Class 12th JEE Main and Advanced 2022
Starts on Apr 7
Anupam Gupta and 2 more

HINDI
Mega Batch Course for Class 12th JEE Main and Advanced 2022
Starts on Apr 6
Narendra Avasthi and 1 more

Hind
Enthuse: Class 12th for JEE Main and Advanced 2022
Starts on Apr 14
Amarnath Anand and 2 more

HINDI
Final Rapid Revision Batch for JEE Main 2021
Starts on Apr 6
Manoj Chouhan and 2 more

If you want to be the BEST "Learn" from the BEST

Halliday / Resnick / Walker PHYSICS ror Jee (MAIN \& ADVANCED)

THOMA
FOR THE JEE

All-Star Crash Course 3.0 Batch

for JEE Main 2023

Starts November 24

Batch highlights:

- 3-month crash course targeting 2023 JEE Main with all IIT JEE Top Educators from Unacademy
- Cover the entire syllabus at a quick pace for JEE Main \& Advanced
- Enhance your JEE competitiveness

Early Growth Batch

for Class 11 IIT JEE Main and Advanced 2025

November 10 onwards

Batch highlights:

- Classes by Top Educators who have trained Learners with single-digit ranks
- Comprehensive Class 11 and 12 syllabus completion
- Start early and prepare for JEE effectively
- Learn from Top online and offline Educators Sakshi Ganotra Chemistry

Namo Kaul

Mohit Bhargav
Physics

Nishant Vora Mathematics

Vjay Tripothi Chemistry

Amarnath Anand Mathematics

- Top notch study material prepared by Top Educators

(FREE)

All India Test Series

A comprehensive Test Series for your JEE 2023/2024 preparation

November 6, 13, 20 and 27

- Physics, Chemistry and Mathematics Mock Tests
- JEE Main pattern test
- Detailed analysis along with solutions

Examples of Trigonometric Equations

$$
\sqrt{\sin \theta=\frac{1}{2}}
$$

2
$2 \sin x-\cos x=3$

Solution of Trigonometric Equations

\#
 Principal Solution

Principal Solution

$$
\begin{array}{r}
\longrightarrow P S \in[0,2 \pi) \\
\\
P S \in[0,2 \pi)
\end{array}
$$

Principal Solution - Shortcut Method
$\sin \theta=\frac{1}{2}$
\#NVStyle
$1-1 \quad \sin \alpha=\frac{1}{2} \Rightarrow \alpha=\frac{\pi}{6}$

$\operatorname{Lin}_{d \rightarrow 2} \frac{\text { S) (A) }}{T \mid C} \xlongequal{1^{\text {at }} \text { and } 2^{\text {nd }}}$

$8-3$
$\pi+\alpha$
$\pi+2 \pi-\alpha$

9

Principal Solution - Shortcut Method
$\sin x=-\frac{1}{2}$
$1-1 \quad \sin \alpha=\frac{1}{2} \quad \alpha \Rightarrow \frac{\pi}{6}$
$\frac{\text { Ans Verify }}{\sin \left(\frac{7 \pi}{6}\right)}$

1.2 $S|A|$| S | A |
| :---: | :---: |

$$
=\sin \left(\pi+\frac{\pi}{6}\right)
$$

$$
=-\operatorname{din} \frac{I}{6}
$$

$1-3$	$\frac{\pi-\alpha}{}$	α
$\pi+\alpha$	$2 \pi-\alpha$	

Principal Solution - Shortcut Method
3
$\tan x=-\frac{1}{\sqrt{3}}$
$1-1 \tan \alpha=\frac{1}{\sqrt{3}} \quad \alpha=\frac{\pi}{6}$

1_{2}| (S) | A |
| :--- | :--- |
| T | C | and IV

$\frac{L_{-3}}{\pi-\alpha \mid \alpha}$| $\pi+\alpha$ |
| :--- |
| $2 \pi-\alpha$ |$\frac{\pi}{6}, 2 \pi-\frac{\pi}{6}$

Principal Solution - Shortcut Method
4
$\operatorname{cosec} x=-2$

$$
\sin x=\frac{-1}{2}
$$

(-1) $\quad \sin \alpha=\frac{1}{2} \quad \alpha=\frac{\pi}{6}$

$\xrightarrow{1-2}$| S | A |
| :--- | :--- |
| T | C |

$$
\stackrel{1-3}{L} P S \Rightarrow \pi+\frac{\pi}{6}, 2 \pi-\frac{\pi}{6}
$$

*General Solution

General Solution

$$
\begin{array}{ll}
\sin \theta=\sin \alpha & \theta=n \pi+(-1)^{n} \alpha \\
\cos \theta=\cos \alpha & \theta=2 n \pi \pm \alpha \\
\tan \theta=\tan \alpha & \theta=n \pi+\alpha
\end{array}
$$

General Solution

$$
\left.\begin{array}{l}
\sin ^{2} \theta=\sin ^{2} \alpha \\
\cos ^{2} \theta=\cos ^{2} \alpha \\
\tan ^{2} \theta=\tan ^{2} \alpha
\end{array}\right\} \quad \begin{gathered}
\theta=n \pi \pm \alpha \\
n \in \mp
\end{gathered}
$$

General solutions

$\sin \theta=\sin \alpha$	\Rightarrow	$\frac{\theta=n \pi+(-1)^{n} \alpha}{\theta=2 n \pi \pm \alpha}$
$\cos \theta=\cos \alpha$	\Rightarrow	$\frac{\theta=n \pi+\alpha}{\tan \theta=\tan \alpha}$

$$
\begin{aligned}
\sin ^{2} \theta & =\frac{1}{4} \\
\sin ^{2} \theta & =\sin ^{2} \frac{\pi}{6} \\
\theta & =n \pi \pm \frac{\pi}{6} \quad n \in z
\end{aligned}
$$

General Solutions - Examples
1
$\sin x=-\frac{\sqrt{3}}{2}$

Method (G.S)
1-1 P.S i)
ii)
iii)

1-2 Use respective formula of G.S.
s-1 i) $\sin \alpha=\frac{\sqrt{3}}{2} \quad \alpha=\frac{\pi}{3}$
ii)
iii)

PS: $\pi+\frac{\pi}{3}, 2 \pi-\frac{\pi}{3}$
Ps: $\left(\frac{4 \pi}{3}\right), \frac{5 \pi}{3}$
f-2
$\quad \sin x=\sin \frac{4 \pi}{3}$
$x=n \pi+(-1)^{n} \frac{4 \pi}{3} \quad n \in \mp$

General Solutions - Examples

General Solutions - Examples
$3 \cot x=-1 \quad \underbrace{\cot x / \sec x / \operatorname{cosec} x}$

- $\tan x=-1$

Li-1 i) $\tan \alpha=1 \quad \alpha=\frac{\pi}{4}$
ii) $\frac{\text { (S) } A}{\text { T/C) }}$ II and IV
iii) $P \delta=\pi-\frac{\pi}{4}, 2 \pi-\frac{\pi}{4}$ $\frac{3 \pi}{4}, \frac{7 \pi}{4}$

$$
\begin{aligned}
& \text { * PSV } \\
& \text { * GSV } \\
& \text { No. of } \text { Soln }
\end{aligned}
$$

Number of Solution

Find Number of Solutions:
1

$$
\begin{array}{ll}
\sin (4 x)=-\frac{1}{2} & x \in[0,2 \pi] \quad \text { No. of } \operatorname{de} t^{n}=8 \\
& \sin (4 x)=-\frac{1}{2} \\
\sin (\theta)=-\frac{1}{2} & 4 x \in[0,8 \pi]
\end{array}
$$

Find Number of Solutions :
2

$$
\begin{array}{ll}
\sec 3 x=2 \text { in } x \in[0, \pi] \\
\cos (3 x)=\frac{1}{2} & x \in[0, \pi] \\
\cos (3 x)=\frac{1}{2} & 3 x \in[0,3 \pi] \\
\cos \theta=\frac{1}{2} & \theta \in[0,3 \pi]
\end{array}
$$

No. of $L_{0}{ }^{n}=3$

The number of distinct solutions of the equation

$$
\frac{5}{4} \cos ^{2} 2 x+\cos ^{4} x+\sin ^{4} x+\cos ^{6} x+\sin ^{6} x=2
$$

in the interval $[0,2 \pi]$ is
[JEE Adv. 2015]

$$
\begin{aligned}
& \frac{5}{4} \cos ^{2} 2 x+1-2 \sin ^{2} x \cos ^{2} x+1-3-3 \sin ^{2} x \cos ^{2} x=2 \\
& \frac{5}{4} \cos ^{2} 2 x-\frac{5}{4}\left(4 \sin ^{2} x \cos ^{2} x\right)=0 \\
& \frac{5}{4}\left\{\cos ^{2} 2 x-\sin ^{2} 2 x\right\}=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{5}{4} \cos 4 x=0 \\
& \Rightarrow \cos 4 x=0 \quad x \in[0,2 \pi] \\
& \cos 4 x=0 \quad 4 x \in[0,8 \pi] \\
& \cos \theta=0 \quad \theta \in[0,8 \pi]
\end{aligned}
$$

9

Type 1: Factorization/ Quadratic Form

Solve $(2 \sin x-\cos x)(1+\cos x)=\sin ^{2} x$ in $[0,2 \pi]$.

$$
\begin{aligned}
& (2 \sin x-\cos x)(1+\cos x)=(1-\cos x)(1+\cos x) \\
& 2 \sin x-\cos 3 x-1+\operatorname{cog} x=0 \\
& \begin{array}{l}
2 \sin x=1 \\
\sin x=\frac{1}{2}
\end{array}[0,2 \pi] \\
& 1+\cos x=0 \\
& \cos x=-1 \\
& x=\pi \\
& \text { CUTE } \\
& \frac{\pi}{6}, \pi-\frac{\pi}{6} \longrightarrow 3 \operatorname{sol}^{n}: \pi, \frac{\pi}{6}, \frac{8 \pi}{6} \\
& \text { Sum of son } x^{n}=2 \pi
\end{aligned}
$$

9

If $\sqrt{3} \cos ^{2} x=(\sqrt{3}-1) \cos x+1$, the number of solutions of the given equation when $x \in\left[0, \frac{\pi}{2}\right]$ is

$$
\begin{aligned}
& \sqrt{3} \cos ^{2} x-\sqrt{3} \cos x+\cos x-1=0 \\
& \sqrt{3} \cos x(\cos x-1)+1(\cos x-1)=0 \\
& \therefore \cos x=1 \quad \text { OR } \cos x=\frac{-1}{\sqrt{3}} \\
& 1+0
\end{aligned}=1 . \begin{aligned}
& \text { (} 1+0
\end{aligned}
$$

9

Let $\quad 4+(-8)=-4$
$S=\left\{\theta \in[0,2 \pi]: \underline{8^{2 \sin ^{2} \theta}+8^{2 \cos ^{2} \theta}=16}\right\}$. Then
[JEE M 2022]
$\underline{\underline{n}(S)}+\sum_{\theta s \mathrm{~S}}\left(\sec \left(\frac{\pi}{4}+2 \theta\right) \operatorname{cosec}\left(\frac{\pi}{4}+2 \theta\right)\right)$ is
equal to : $8^{2 \sin ^{2} \theta}+8^{2-2 \sin ^{2} \theta}=16 \quad 8^{2 \sin ^{2} \theta}=t$
A. 0
B. -2

LE. -4
D. 12

$$
\begin{array}{l|l}
\Rightarrow t+\frac{64}{t}=16 & 8^{2 \sin ^{2} \theta}=8^{1} \\
\Rightarrow t^{2}-16 t+64=0 & \therefore \sin ^{2} \theta=\frac{1}{2} \\
\Rightarrow(t-8)^{2}=0 &
\end{array}
$$

$$
\begin{aligned}
& 1^{\text {st }} / 2^{\text {nd }} \quad 3^{\text {nd }} / 4^{\text {th }} \\
& \underbrace{\sin \theta=\frac{+1}{\sqrt{2}}} \sin \theta=\frac{-1}{\sqrt{2}} \\
& \frac{2}{\cos \pi}+\frac{2}{\cos 3 \pi}+\frac{2}{\cos 5 \pi}+\frac{2}{\cos 7 \pi} \\
& S=\left\{\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}\right\} \quad n(s)=4 \quad-2 \times 4=-8 \\
& \sum_{\theta \in S} \frac{1 x^{2}}{2 \cos \left(\frac{\pi}{4}+2 \theta\right) \sin \left(\frac{\pi}{4}+2 \theta\right)} \Rightarrow \sum_{\theta \in S} \frac{2}{\sin \left(\frac{\pi}{2}+4 \theta\right)} \\
& \Rightarrow \sum_{\theta \in S}\left(\frac{2}{\cos 4 \theta}\right)
\end{aligned}
$$

If the sum of solutions of the system of equations $2 \sin ^{2} \theta-\cos 2 \theta=0$ and $2 \cos ^{2} \theta+3 \sin \theta=0$ in the interval $[0,2 \pi]$, then k is equal to

$$
\begin{gathered}
2 \sin ^{2} \theta=\cos 2 \theta \\
2 \sin ^{2} \theta=1-2 \sin ^{2} \theta \\
\sin ^{2} \theta=\frac{1}{4} \\
\sin \theta=\frac{1}{2} \text { OR } \frac{-1}{2}
\end{gathered}
$$

$$
\begin{aligned}
& 2 \cos ^{2} \theta+3 \sin \theta=0 \\
& 2\left(1-\sin ^{2} \theta\right)+3 \sin \theta=0 \\
& 2 \sin ^{2} \theta-3 \sin \theta-2=0 \\
& 2 \sin ^{2} \theta-4 \sin \theta+\sin \theta-2=0 \\
& (2 \sin \theta+1)(\sin \theta-2)=0 \\
& \sin \theta=\frac{-1}{2} \text { or } 2
\end{aligned}
$$

$$
\sin \theta=\frac{-1}{2} \quad[0,2 \pi]
$$

1-1 $\quad \sin \alpha=\frac{1}{2} \quad \alpha=\frac{\pi}{6}$
d-2 $\frac{S}{S}|A| \begin{array}{ll}\text { (1) } & \text { nd } \text { and } 4^{\text {th }} \quad \text { Aum }=3 \pi\end{array} \quad \begin{array}{ll} \\ \end{array}$
d-3 PS: $\pi+\frac{\pi}{6}$ and $2 \pi-\frac{\pi}{6}$

$$
\frac{7 \pi}{6}, \frac{11 \pi}{6}
$$

If $\underset{\underline{S}}{ }=\left\{\theta \in(0,2 \pi): 7 \cos ^{2} \theta-3 \sin ^{2} \theta-2 \cos ^{2} 2 \theta=2\right\}$. Then, the sum of roots of all the equations $\underline{x}^{2}-2\left(\tan ^{2} \theta+\cot ^{2} \theta\right) x+6 \sin ^{2} \theta=0 \theta \in S$,

$$
\begin{array}{ll}
\Rightarrow\left(\frac{1+\cos 2 \theta}{2}\right)-3\left(\frac{1-\cos 2 \theta}{2}\right)-2 \cos ^{2} 2 \theta=2 \\
\Rightarrow & x+5 \cos 2 \theta-2 \cos ^{2} 2 \theta=2
\end{array} \begin{aligned}
& \cos 2 \theta= \\
& \cos (2 \theta)= \\
& \Rightarrow \cos 2 \theta(5-2 \cos 2 \theta)=0 \\
& 2 \theta=\frac{\pi}{2}, \\
& \Rightarrow \theta=\frac{\pi}{4}
\end{aligned}
$$

[JEE M 2022]

$$
\begin{aligned}
& S=\{\underbrace{\left.\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{2}, \frac{7 \pi}{4}\right\}} \\
& \text { Sum of Root }=2\left(\tan ^{2} \theta+\cot ^{2} \theta\right) \\
& \Rightarrow 4+4+4+4 \\
& \Rightarrow 16
\end{aligned}
$$

Let

$$
\underline{S}=\left\{\theta \in[-\pi, \pi]-\left\{ \pm \frac{\pi}{2}\right\}: \frac{\sin \theta \tan \theta+\tan \theta=\sin 2 \theta}{4+5} .\right.
$$

A. $7+\sqrt{3}$

$$
\tan \theta(\sin \theta+1)=\frac{2 \tan \theta}{1+\tan ^{2} \theta}
$$

-.) 9
C. $8+\sqrt{ } 3$

$$
\tan \theta=0
$$

D. 10

$$
\begin{aligned}
& \sin \theta+1=2 \cos ^{2} \theta \\
& \sin \theta+1=2\left(1-\sin ^{2} \theta\right) \\
& 2 \sin ^{2} \theta+\sin \theta-1=0 \\
& 2 \sin ^{2} \theta+2 \sin \theta-\sin \theta-1=0 \\
& (2 \sin \theta-1)(\sin \theta+1)=0
\end{aligned}
$$

$$
\begin{aligned}
& {[-\pi, \pi]-\left\{ \pm \frac{\pi}{2}\right\}} \\
& \begin{array}{l|l|ll}
\tan \theta=0 & \sin \theta=\frac{1}{2} & \sin \theta=-1 & S=\left\{\frac{-\pi}{-}, 0, \pi, \frac{\pi}{6}, \frac{5 \pi}{6}\right\} \\
-\pi, 0, \pi & \frac{\pi}{6}, \frac{5 \pi}{6} & \text { No Sol }
\end{array} \\
& T=\sum_{\theta \in S} \cos 2 \dot{\theta} \\
& =\cos (-2 \pi)+\cos 0+\cos 2 \pi+\cos \frac{\pi}{3}+\cos \frac{5 \pi}{3} \\
& =1+1+1+\frac{1}{2}+\frac{1}{2} \\
& =4
\end{aligned}
$$

The number of elements in the set $S=$

$$
\begin{aligned}
& \left\{\theta \epsilon[-4 \pi, 4 \pi]: 3 \cos ^{2} 2 \theta+6 \cos 2 \theta=\right. \\
& \left.10 \cos ^{2} \theta+5=0\right\} \text { is } 32 \\
& 3 \cos ^{2} 2 \theta+6 \cos 2 \theta-5\left(2 \cos ^{2} \theta\right)+5=0 \\
& 3 \cos ^{2} 2 \theta+6 \cos 2 \theta-5(1+\cos 2 \theta)+5=0 \\
& 3 \cos ^{2} 2 \theta+\cos 2 \theta=0 \\
& \cos 2 \theta(3 \cos 2 \theta+1)=0
\end{aligned}
$$

$$
\cos 2 \theta=0 \quad \cos 2 \theta=\frac{-1}{3}
$$

$\begin{array}{ll}\cos 2 \theta=0 & \theta \in[-4 \pi, 4 \pi] \\ \cos x=0 & x \in[-8 \pi, 8 \pi]\end{array}$

Type 2

$$
a \sin x+b \cos x=c
$$

Method
\Rightarrow divide by $\sqrt{a^{2}+b^{2}}$ both sides.

Find general solution of $\sin x+\cos x=\sqrt{2}$.

$$
\begin{array}{cc}
\left(\frac{1}{\sqrt{2}} \sin x+\frac{1}{\sqrt{2}} \cos x=\frac{\sqrt{2}}{\sqrt{2}}\right. & \sqrt{(1)^{2}+(1)^{2}}=\sqrt{2} \\
\sin \frac{\pi}{4} \sin x+\cos \frac{\pi}{4} \cos x=1 & \underline{2 n \pi \pm \alpha} \\
\# \cos \left(x-\frac{\pi}{4}\right)=\cos 0 & n \pi+(-1)^{n} \alpha \\
x-\frac{\pi}{4}=2 n \pi \pm 0 & \\
\therefore x=2 n \pi+\frac{\pi}{4} n \in
\end{array}
$$

Find general solution of $\sqrt{3} \cos x+\sin x=2$.

$$
\begin{aligned}
& \frac{\sqrt{3}}{2} \cos x+\frac{1}{2} \sin x=\frac{2}{2} \quad \sqrt{(\sqrt{3})^{2}+1^{2}}=2 \\
& \cos \frac{\pi}{6} \cos x+\sin \frac{\pi}{6} \sin x=1 \\
& \cos \left(x-\frac{\pi}{6}\right)=\cos 0 \\
& x-\frac{\pi}{6}=2 h \pi \\
& \therefore x=2 h \pi+\frac{\pi}{6}
\end{aligned}
$$

Find the general solutions of equation $\sin x+\cos x=3 / 2$

$$
\begin{aligned}
& \frac{1}{\sqrt{2}} \sin x+\frac{1}{\sqrt{2}} \cos x
\end{aligned}=\frac{3}{2 \sqrt{2}}
$$

$$
\frac{\sqrt{9}}{\sqrt{8}}=\sqrt{\frac{9}{8}}
$$

$$
1.5 \mathrm{sm}
$$

The number of integral values of ' k ' for which the equation $3 \sin x+4 \cos x=k+1$ has a solution, $k \in R$ is

$$
\begin{aligned}
& {\left[-\sqrt{a^{2}+b^{2}}, \sqrt{a^{2}+b^{2}}\right]} \\
& {[-5,5] \quad k+1} \\
& -5 \leqslant k+1 \leqslant 5 \\
& -6 \leqslant k \leqslant 4
\end{aligned}
$$

Concept: "Sol" Exiat Karta hai"

$$
\frac{\sin x=4}{[-1,1]=4} \begin{aligned}
& N_{0} d_{0, n}
\end{aligned}
$$

$$
\underset{[-1,1]}{\sin x}=\int_{\sqrt{3} / 2}^{1 / 2} \quad \begin{gathered}
\sin x=k \\
1 / 3 \\
2 / 3
\end{gathered}
$$

Consider the following lists:

List-I

List-II $\quad \tan \left(\frac{-5 \pi}{6}\right)$
(I) $\left\{x \in\left[-\frac{2 \pi}{3}, \frac{2 \pi}{3}\right]: \cos x+\sin x=1\right\}$ (4) $\left\{x \in\left[-\frac{5 \pi}{18}, \frac{5 \pi}{18}\right]: \sqrt{3} \tan 3 x=1\right\}$ (III) $\left\{x \in\left[-\frac{6 \pi}{5}, \frac{6 \pi}{5}\right]: 2 \cos (2 x)=\sqrt{3}\right\}$
3
$=1\}$
(P) has two elements $=-\tan \frac{5 \pi}{6}$ $1\}$
$1\}$
6 (IV) $\left\{x \in\left[-\frac{7 \pi}{4}, \frac{7 \pi}{4}\right]: \sin x-\cos x=1\right\}$
(Q) has three elements $=\frac{1}{\sqrt{3}}$
(B) has four elements

$$
\begin{array}{ll}
\tan 3 x=\frac{1}{\sqrt{3}} & x \in\left[\frac{-5 \pi}{18}, \frac{5 \pi}{\frac{5}{8}}\right] \\
\tan (\theta)=\frac{1}{\sqrt{3}} \quad \theta \in\left[-\frac{5 \pi}{6}, \frac{5 \pi}{6}\right]
\end{array}
$$

(S) has five elements

The correct option is:
炏 (I) \rightarrow (P); (II) \rightarrow (S); (III) \rightarrow (P); (IV) $\rightarrow(\mathrm{S})$
(B) (I) \rightarrow (P); (II) \rightarrow (P); (III) \rightarrow (T); (IV) \rightarrow (R)
(C) (I) \rightarrow (Q); (II) \rightarrow (P); (III) \rightarrow (T); (IV) \rightarrow (S)

Oर (I) \rightarrow (Q); (II) \rightarrow (S); (III) \rightarrow (P); (IV) $\rightarrow(\mathrm{R})$

$$
-\frac{7 \pi}{4}-\frac{\pi}{4}, \frac{7 \pi}{4}-\frac{\pi}{4}
$$

$$
\begin{array}{ll}
\frac{1}{\sqrt{2}} \sin x-\frac{1}{\sqrt{2}} \cos x=\frac{1}{\sqrt{2}} & x \in\left[-\frac{7 \pi}{4}, \frac{7 \pi}{4}\right] \\
\sin \left(x-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \quad\left(x-\frac{\pi}{4}\right) \in\left[-2 \pi, \frac{3 \pi}{2}\right] \\
\sin (\theta)=\frac{1}{\sqrt{2}} \quad \theta \in\left[-2 \pi, \frac{3 \pi}{2}\right]
\end{array}
$$

9

9
(1) $Q E$-factorise
(2) $a \sin x+b \cos x=c$

\# Type - 3

(Convert Sum to Product)

Type 3

Convert Sum to Product

If $0 \leq x<\frac{\pi}{2}$, then the number of values of x for which
$\sin x-\sin 2 x+\sin 3 x=0$ is $x \in\left[0, \frac{\pi}{2}\right)$
A. 3
B. 1
C. 4

$$
\begin{aligned}
& \sin x+\sin 3 x-\sin (2 x)=0 \\
& 2 \sin (2 x) \cos (x)-\sin 2 x=0 \\
& \sin (2 x)(2 \cos x-1)=0 \\
& \sin 2 x=0 \text { OR } \cos x=1 / 2
\end{aligned}
$$

D. 2

$$
\begin{array}{ll}
\sin 2 x=0 & x \in\left(0, \frac{\pi}{2}\right) \\
\sin 2 x=0 & 2 x \in[0, \pi) \\
\sin \theta=0 & \theta \in[0, \pi) \\
1+1=0 & \cos x=\frac{1}{2} \quad x \in\left(0, \frac{\pi}{2}\right)
\end{array}
$$

If the sum of values of x in $[0,2 \pi]$, for which $\sin x+\sin 2 x+\sin 3 x+\sin 4 x=0$, is equal to
A. 8π
B. 11π
C. 12π
V.) 9π

$$
2 \sin \left(\frac{5 x}{2}\right) \cos \left(\frac{3 x}{2}\right)+2 \sin \left(\frac{5 x}{2}\right) \cos \left(\frac{x}{2}\right)=0
$$

(D) $2 \sin \left(\frac{5 x}{2}\right)\left\{\cos \frac{3 x}{2}+\cos \frac{x}{2}\right\}=0$
[JEE M 2021]

$$
\begin{aligned}
\frac{C-D}{2} & =\frac{x-4 x}{2} \\
& =\frac{-3 x}{2}
\end{aligned} \quad 2 \sin \left(\frac{5 x}{2}\right)\left\{\begin{array}{c}
2 \cos x \cos \frac{x}{2} \\
V
\end{array}\right\}=0
$$

$$
\begin{aligned}
& x \in[0,2 \pi] \\
& \sin \frac{5 x}{2}=0, \\
& \frac{5 x}{2}=0, \frac{5 x}{2}=0,2 \pi, 2 \pi, 2 \pi, 4 \pi, 5 \pi \\
& \therefore x=0, \frac{2 \pi}{5}, \frac{4 \pi}{5}, \frac{6 \pi}{5}, \frac{8 \pi}{5}, 2 \pi \\
& x=\frac{\pi}{2}, \frac{3 \pi}{2} \\
& \hline
\end{aligned}
$$

$$
\begin{array}{ll}
\cos \frac{x}{2}=0 & x \in[0,2 \pi] \\
\cos \left(\frac{x}{x}\right)=0 & \frac{x}{2} \in[0, \pi] \\
\frac{x}{x}=\frac{\pi}{2} & \\
x=\pi &
\end{array}
$$

Sum of $S_{0} h^{n} \Rightarrow 9 \pi$

9

The positive integer value of $\underline{n>3}$ satisfying the equation

$$
\begin{aligned}
& \frac{1}{\sin \left(\frac{\pi}{n}\right)}=\frac{1}{\sin \left(\frac{2 \pi}{n}\right)}+\frac{1}{\sin \left(\frac{3 \pi}{n}\right)} \text { is } \operatorname{sum} \Rightarrow \text { Product } \\
& \frac{1}{\sin \left(\frac{\pi}{n}\right)}-\frac{1}{\sin \left(\frac{3 \pi}{n}\right)}=\frac{1}{\sin \left(\frac{2 \pi}{n}\right)} \\
& \frac{\sin \left(\frac{3 \pi}{n}\right)-\sin \left(\frac{\pi}{n}\right.}{\sin \left(\frac{\pi}{n}\right) \operatorname{tin}\left(\frac{3 \pi}{n}\right)}=\frac{1}{\sin \left(\frac{2 \pi}{n}\right)}
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{2 \cos \left(\frac{2 \pi}{n}\right) \sin \left(\frac{\pi}{n}\right)}{\sin \left(\frac{\pi}{n}\right) \sin \left(\frac{3 \pi}{n}\right)}=\frac{1}{\sin \left(\frac{2 \pi}{n}\right)} & n=7 \\
\underbrace{}_{\left(\begin{array}{ll}
n=7 \\
\sin \left(\frac{4 \pi}{n}\right)=\sin \left(\frac{3 \pi}{n}\right) & \sin \left(\frac{2 \pi}{n}\right)=\sin \left(\frac{3 \pi}{7}\right)
\end{array}\right.}=\sin \left(\frac{3 \pi}{n}\right) & \sin \theta=\sin (\pi-\theta)
\end{array}
$$

Type-4
 (Convert Product to Sum)

Type 4

Convert Product into Sum

Number of solutions of the trigonometric equation in $[0, \pi]$,

$$
\sin 3 \theta=4 \sin \theta \cdot \sin 2 \theta \cdot \sin 4 \theta
$$

$$
\sin (A-B) \cdot \sin (A+B)=\sin ^{2} A-\sin ^{2} B
$$

A. 4
B. 6
C. 8
D. 10

$$
\begin{aligned}
& \Rightarrow \sin 3 \theta=4 \sin \theta \sin (3 \theta-\theta) \sin (3 \theta+\theta) \\
& \Rightarrow \quad \sin 3 \theta=4 \sin \theta\left(\sin ^{2} 3 \theta-\sin ^{2} \theta\right) \\
& \Rightarrow 3 \sin \theta-4 \sin \theta=4 \sin \theta \sin ^{2} 3 \theta-4 \sin ^{2} \theta \\
& \Rightarrow 3 \sin \theta=4 \sin \theta \sin ^{2} 3 \theta
\end{aligned}
$$

$\sin x \pm \cos x$
$\sin x \cos x \geqslant$

$$
\leftrightarrow \text { Min } x+\cos x=\sin x \cos x+2
$$

Type-5

$f(\sin x \pm \cos x, \sin x \cos x)$

Type 5
(i) Equations of the form $P(\sin x \pm \cos x, \sin x \cdot \cos x)=0$, can be solved by the substituting $\cos x \pm \sin x=\dagger$
(ii) Many equations can be solved by introducing a new variable e.g. consider the equation $\sin ^{4} 2 x+\cos ^{4} 2 x=\sin 2 x \cdot \cos 2 x$

$$
\sin x+\cos x=\sin x \cos x+2
$$

Method $\sin x+\cos x=t$

$$
\begin{aligned}
& \Rightarrow(\sin x+\cos x)^{2}=t^{2} \\
& \Rightarrow 1+2 \sin x \cos x=t^{2} \\
& \Rightarrow \sin x \cos x=\frac{t^{2}-1}{2}
\end{aligned}
$$

Find general value of x satisfying the equation

$$
\sin 4 x<-2 \quad \sin 4 x=1
$$

$$
\begin{aligned}
& \sin ^{4} 2 x+\cos ^{4} 2 x=\sin 2 x \cos 2 x \text {. } \\
& 2\left(1-2 \sin ^{2} 2 x \cos ^{2} 2 x=\sin 2 x \cos 2 x\right) \\
& \Rightarrow 2-\sin ^{2} 4 x=\sin 4 x \\
& \Rightarrow \quad \sin ^{2} 4 x+\sin 4 x-2=0 \\
& \Rightarrow(\sin 4 x+2)(\sin 4 x-1)=0 \\
& \sin 4 x=\sin \frac{\pi}{2} \\
& x=\frac{n \pi}{4}+(-1)^{n} \frac{\pi}{8}
\end{aligned}
$$

9

Type 6

Solving equations with the use of boundedness of the function.

Remember :-

$$
\begin{aligned}
& -1 \leq \sin x \leq 1,-1 \leq \cos x \leq 1, \tan x \in R, \cot x \in R . \\
& \underbrace{|\operatorname{cosec} x|} \geq 1, \underbrace{|\sec x|} \geq 1 \text {. } \\
& \left.\begin{array}{l}
\sec x \\
\operatorname{cosec} x
\end{array}\right\}(-\infty,-1] \cup[1, \infty)
\end{aligned}
$$

Most G.S.
Ser $x: \underset{1}{\cos x+\cos 2 x+\cos 3 x=(3)}$

$$
\begin{aligned}
& n \in z \underbrace{\cos x=1}_{!} \underbrace{\cos 2 x=1} \underbrace{\cos 3 x=1} \\
& \therefore x=2 y \pi \quad 2 x=k n \pi \quad 3 x=2 n \pi \\
& \left\{0,2 \pi, 3 n, 6 \pi, \cdots \quad \therefore x=n \pi \quad \therefore x=\frac{2 n \pi}{3}\right. \\
& \begin{array}{l}
n=n \pi \quad \therefore x=\frac{2 n \pi}{3} \\
\{0, \pi, 2 \pi, 3 \pi, 4 \pi, \ldots\}\left\{0, \frac{2 \pi}{3}, \frac{4 \pi}{3}, 2 \pi, \frac{8 \pi}{3}, \ldots\right\}
\end{array} \\
& G S \in\{n \pi\} \cup\left\{\frac{2 n \pi}{3}\right\}
\end{aligned}
$$

All the pairs (x, y) that satisfy the inequality $2 \sqrt{\sin ^{2} x-2 \sin x+5} \frac{1}{2 x \sin ^{2} y} \leq 1$ also satisfy the equation:
(1) $2|\sin x|=3 \sin y$
(2) $2 \sin x=\sin y$
(3) $\sin x=2 \sin y$
(4) $\sin x=|\sin y|$

$$
\sin x=-1 \quad \sqrt{\sin ^{2} x-2 \sin x+5} \leqslant 2 \sin ^{2} y
$$

$$
\underbrace{\sqrt{(\sin x-1)^{2}+4}}_{[2,2 \sqrt{2}]} \leqslant \underbrace{2 \sin ^{2} y}_{[0,2]}
$$

$$
\sin ^{2} y=1
$$

$$
\sin x=|\sin y|
$$

9

The number of solutions of $\sin ^{7} x+\cos ^{7} x=1, x \in[0,4 \pi]$ is equal to
A. 11

$$
\sin ^{7} x+\cos ^{7} x=1
$$

B. 7
C. 5
D. 9

5 sol

$\sin x$	$\cos x$
1	0
0	

[JEE M 2021]

9

For $x \in(0, \pi)$, the equation $\sin x+2 \sin 2 x-\sin 3 x=3$ has
(a) infinitely many solutions
(b) three solutions
(c) one solution
(d) no solution $-2 \cos 2 x \sin x+2 \sin 2 x=3$
[JEE Adv. 2014]
(D)

$$
\begin{aligned}
& -2 \cos 2 x \sin x+4 \sin x \cos x=3 \\
& \sin x(-2 \cos 2 x+4 \cos x \\
& -2\left(2 \cos ^{2} x-1\right)+4 \cos x=\frac{3}{\sin x}
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{-1-4 \cos ^{2} x+4 \cos x}+3=3 \operatorname{cosec} x \\
& \frac{3-(2 \cos x-1)^{2}}{[-6,3]}=\frac{3 \operatorname{cosec} x}{[3, \infty)} \\
& \cos x=-1 \quad \text { No Sol } l^{n} \cos x=\frac{1}{2} \quad \sin x=1 \\
& \cos x=1 / 2
\end{aligned}
$$

(Root wale sawal)

* Type-7

$$
f(x)=\sqrt{\varphi(x)}
$$

Solution of trigonometric equation of the form $f(x)=\sqrt{\varphi(x)}$
(i) $f(x) \geq 0, \varphi(x) \geq 0$
(ii) $f^{2}(X)=\varphi(X)$

* Jab bi sq. both sides

fatter Sol

Solve for $\mathrm{x}, \sin x=\sqrt{1-\cos x}$ in $\mathrm{x} \in[0,2 \pi]$

$$
\begin{aligned}
& \underbrace{\sin x}=\sqrt{1-\cos x} \\
&\left\{\begin{array}{rl}
x=0 & 0 \\
x=2 \pi & 0 \\
=\sqrt{1-1} \\
x=\frac{\pi}{2} & 1
\end{array}\right. \\
& \frac{1-1}{1-3}-1
\end{aligned}
$$

9

Type-8 Log wale Questions

The number of distinct solutions of the equation, $\log _{\frac{1}{2}}|\sin x|=2-\log _{\frac{1}{2}}|\cos x|$ in the interval $[0,2 \pi]$, is \qquad

$$
\begin{gathered}
\log _{\frac{1}{2}}|\sin x|+\log _{\frac{1}{2}}|\cos x|=2 \\
\log _{\left.\frac{1}{2}\right)} \frac{|\sin x| \cdot|\cos x|=2}{|a||b|=|a b|} \\
|2 \sin x \cdot \cos x|=\frac{1}{4} \times 2 \\
|\sin 2 x|=\frac{1}{2}
\end{gathered}
$$

$$
\begin{array}{cl}
\sin 2 x= \pm \frac{1}{2} & x \in[0,2 \pi] \\
\sin (2 x)= \pm \frac{1}{2} & 2 x \in[0,4 \pi] \\
* \sin (\theta)= \pm \frac{1}{2} & \theta \in[0,4 \pi]
\end{array}
$$

If for $x \in\left(0, \frac{\pi}{2}\right), \log _{10} \sin x+\log _{10} \cos x=-1$ and
$\log _{10}(\sin x+\cos x)=\left(\frac{1}{2}\right)\left(\log _{10} n\right.$-(1) $n>0$ then the value of n is
A. 20
B. 12

$$
\log _{10}(\sin x \cos x)=-1
$$

C. 9
D. 16

$$
\begin{equation*}
\therefore \quad \sin x \cos x=10^{-1}=\frac{1}{10} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \log _{10}(\sin x+\cos x)^{2}=\log _{10} n-\log _{10} 10 \\
& \log _{10}(1+2 \operatorname{lin} x \cos x \\
&)=\log _{10}\left(\frac{n}{10}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 1+2 \times \frac{1}{10}=\frac{n}{10} \\
& \therefore n=12
\end{aligned}
$$

The number of solutions of equation $\vec{x}+2 \tan x=\frac{\pi}{2}$ in the interval $[0,2 \pi]$ is :

9

The number of solutions of $|\cos x|=\sin x$, such that $-4 \pi \leq x \leq 4 \pi$ is
A. 4

$$
[0,2 \pi] \rightarrow 2 \text { \&ld' [JEE M 2022] }
$$

B. 6
e. 8
D. 12

$$
\begin{aligned}
& y=|\cos x| \\
& y=\sin x
\end{aligned}
$$

$$
\begin{aligned}
{[-4 \pi, 4 \pi] } & \rightarrow 2 \times 4 \\
& =8 \mathrm{sol}
\end{aligned}
$$

The number of solutions of the equation $2 \theta-\cos ^{2} \theta+\sqrt{2}=0 \stackrel{i n}{i r} R$ is equal to -1
[JEE M 2022]

$$
\begin{aligned}
& y=2 \theta+\sqrt{2} \\
& (0, \sqrt{2}) \quad y=\underset{m=2}{2 x}+\sqrt{2} \\
& \underbrace{2 \theta+\sqrt{2}}=\underbrace{\cos ^{2} \theta} \\
& \theta \in(-\infty, \infty) \\
& y=\cos ^{2} \theta \\
& \begin{array}{l|l}
\theta & y \\
\hline 0 & 1 \\
\frac{\pi}{2} & 0 \\
\pi & 1 \\
3 \pi & 0 \\
2 \pi & 1
\end{array}
\end{aligned}
$$

The number of solutions of the equation $\sin x=\cos ^{2} x$ in the interval $(0,10)$ is_.
$m-1$

$$
\sqrt{5} \approx 2.2
$$

[JEE M 2022]

$$
\sin x=\cos ^{2} x
$$

$$
\sqrt{3} \approx 1.7
$$

$\sin x=0.6 \quad x \in(0,10)$
4

$$
\begin{aligned}
& \sin x=1-\sin ^{2} x \\
& \sin ^{2} x+\sin x-1=0
\end{aligned}
$$

PYQS

The number of values of θ in the interval, $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such
that $\theta \neq \frac{\mathrm{n} \pi}{5}$ for $\mathrm{n}=0, \pm 1, \pm 2$ and $\tan \theta=\cot 5 \theta$ as well as

$$
\sin 2 \theta=\cos 4 \theta \text { is } 3
$$

(1)

$$
\begin{aligned}
\tan \theta & =\cot 5 \theta \\
\tan \theta & =\tan \left(\frac{\pi}{2}-5 \theta\right) \\
\theta & =n \pi+\frac{\pi}{2}-5 \theta \\
6 \theta & =\frac{(2 n+1) \pi}{2} \\
\therefore \theta & =\frac{(2 n+1) \pi}{12}
\end{aligned}
$$

$$
\begin{aligned}
& \theta \in\left(\quad\left\{\frac{\pi}{12}, \frac{5 \pi}{12}, \frac{-3 \pi}{12}\right\}\right. \\
& \cos \left(\frac{\pi}{2}-2 \theta\right)=\cos 4 \theta \\
& \frac{\pi}{2}-2 \theta=2 n \pi \pm 4 \theta \\
& \frac{\pi}{2}-2 \theta=2 n \pi+4 \theta \quad \frac{\pi}{2}-2 \theta=2 n \pi-4 \theta \\
& \begin{array}{c}
\frac{\pi}{12} \\
n=1 \\
\frac{-3 \pi}{12} \\
n=-2 \\
\frac{9 \pi}{12} x
\end{array} \\
& n=2-\frac{77}{12} x \\
& \therefore \frac{\pi}{2}-2 n \pi=6 \theta \\
& \therefore \frac{(1-4 n) \pi}{12}=0 \\
& 2 \theta=2 n \pi-\frac{\pi}{2} \quad n=0 \quad-\frac{\pi}{4} v \\
& n=-1-\frac{\delta \pi}{4} x \\
& \theta=\frac{(4 n-1) \pi}{4} \quad \begin{array}{c}
n=1 \\
\vdots
\end{array} \frac{3 \pi}{4} x
\end{aligned}
$$

9

Let $S=\left\{x \in(-\pi, \pi): x \neq 0, \pm \frac{\pi}{2}\right\}$. The sum of all distinct
solutions of the equation $\sqrt{3} \sec x+\operatorname{cosec} x+2(\tan x-$ $\cot x)=0$ in the set S is equal to
(a) $-\frac{7 \pi}{9}$
(b) $-\frac{2 \pi}{9}$
[JEE Adv. 2016]
(c) 0

(d) $\frac{5 \pi}{9}$

$$
\begin{aligned}
& \sqrt{3} \sec x+\operatorname{cosec} x+2(\tan x-\cot x)=0 \\
& \frac{\sqrt{3}}{\cos x}+\frac{1}{\sin x}+2\left(\frac{\sin ^{2} x-\cos ^{2} x}{\sin x \cos x}\right)=0 \\
& \frac{\sqrt{3} \sin x+\cos x}{\sin x \cos x}+\frac{2(-\cos 2 x)}{\sin x \cos x}=0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll|ll}
\sin \frac{\pi}{3} & \cos \frac{\pi}{3} \\
\frac{\sqrt{3}}{2} \sin x+\left(\frac{n \cos x}{2}\right. & \cos 2 x & n=0 & -\frac{\pi}{3} \\
& n=1 & -\frac{7 \pi}{3} \times & n=0 \\
\sin \frac{\pi}{3} & \frac{\pi}{9} \checkmark \\
\sin x+\cos \frac{\pi}{3} \cos x=\cos 2 x & \frac{7 \pi}{9} \checkmark \\
n=-1 & \frac{5 \pi}{3} \times & n=2 & \frac{13 \pi}{9} \times
\end{array} \\
& \cos \left(x-\frac{\pi}{3}\right)=\cos 2 x \\
& x-\frac{\pi}{3}=2 n \pi+2 x \\
& -\frac{\pi}{3}-2 n \pi=x \\
& -\frac{(6 n+1) \pi}{3}=x \\
& n=-1 \quad \frac{-5 \pi}{9} \sqrt{ } \\
& x-\frac{\pi}{3}=2 n \pi-2 x \quad n=-2 \quad \frac{-11 \pi}{9} X
\end{aligned}
$$

9

Join with us in Telegram

TELEGRAM CHANNEL

o t.me/unacademyatoms

COMPLETE NOTES AND LECTURES

v. tinyurl.com/unacademyatoms

Unacademy $\}$ Subscription $\}$

HINDI
Igneous Batch for JEE Advanced \& Olympiads 2021
Started on Jul 7
Nishant Dora and 1 more

HINDI
Evolve Batch Course for Class 12th JEE Main and Advanced 2022
Starts on Apr 7
Anupam Gupta and 2 more

HINDI
Mega Batch Course for Class 12th JEE Main and Advanced 2022
Starts on Apr 6
Narendra Avasthi and 1 more

HINDI
Enthuse: Class 12th for JEE Main and Advanced 2022
Starts on Apr 14
Amarnath Anand and 2 more

HINDI
Final Rapid Revision Batch for JEE Main 2021
Starts on Apr 6
Manoj Chouhan and 2 more

Course of 12th syllabus Physics for JEE Aspirants 2022: Part - 1 Lesson 1• Apr 2, 2021 12:30 PM
DC Pandey

If you want to be the BEST "Learn" from the BEST

Holiday / Pesnick/Walter PHYSICS for fee (main \& Advanced)

All-Star Crash Course 3.0 Batch

 for JEE Main 2023Starts November 24

Batch highlights:

- 3-month crash course targeting 2023 JEE Main with all IIT JEE Top Educators from Unacademy
- Cover the entire syllabus at a quick pace for JEE Main \& Advanced
- Enhance your JEE competitiveness

Early Growth Batch

for Class 11 IIT JEE Main and Advanced 2025

November 10 onwards

Batch highlights:

- Classes by Top Educators who have trained Learners with single-digit ranks
- Comprehensive Class 11 and 12 syllabus completion
- Start early and prepare for JEE effectively
- Learn from Top online and offline Educators
- Top notch study material prepared by Top Educators

Vijay Tripathi Chemistry

Mohit Bhargav
Physics

Nishant Vora Mathemotics
 Sakshi Ganotra Chemistry

All India Test Series

A comprehensive Test Series for your JEE 2023/2024 preparation FREE
November 6, 13, 20 and 27

- Physics, Chemistry and Mathematics Mock Tests
- JEE Main pattern test
- Detailed analysis along with solutions

Step 2

