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9.5 Stress-strain ¢
9,6 Elastic moculi

MECHANICAL PROPERTIES OF SOLIDS

9.1 INTRODUC

In Chapter 7, we studied the rotation of the bodies and then
realised that the motion of a body depends on how mass is
distributed within the body. We restricted ourselves to simpler
situations of rigid bodies. A rigid body generally means a
hard solid object having a definite shape and size. But in
reality, bodies can be stretched, compressed and bent. Even
the appreciably rigid steel bar can be deformed when a
sufficiently large external force is applied on it. This means
that solid bodies are not perfectly rigid.

Asolid has definite shape and size. Irrorder to change (or
deform) the shape or size of a body, a force is required. If
you stretch a helical spring by gently pulling its ends, the
length of the spring increases slightly. When you leave the
ends of the spring, it regains its original size and shape. The
property of a body, by virtue of which it tends to regain its
original size and s stpe when the applied force is removed, is
known as elasticity and the deformation caused is known
as elastic deformation. However, if you apply force to a lump
of putty or mud, they have no gross tendency to regain their
previous shape, and they get permanently deformed. Such
substances are called plastic and this property is called
plasticity. Putty and mud are close to ideal plastics.

The elastic behaviour of materials plays an important role

in engineering design. For example, while designing a
building, knowledge of elastic properties of materials like steel,
concrete etc. is essential. The same is true in the design of
bridges, automobiles, ropeways etc. One could also ask —
Can we design an aeroplane which is very light but
sufficiently strong? Can we design an artificial limb which
is lighter but stronger? Why does a railway track have a
particular shape like I? Why is glass bﬂtﬂgmgﬁa‘sﬁg
not? Answers to such questions begin with the study of how
relatively simple kinds of loads or forces act to deform
different solids bodies. In this chapter, we shall study the



elastic behaviour and mechanical properties of
solids which would answer many such

questions.
9.3 ELASTIC BEHAVIOUR OF SOLIDS

We know that in a solid, each atom or molecule
Is surrounded by neighbouring atoms or

molecules. These are bonded together by
interatomic or intermolecular forces and stay
ITESTAble equilibrinm position. WHer X sotids

delormed, the atoms or molecules are displaced
from their equilibrium positions causing a
change In the interatomic (or intermolecular)

distances. When the deforming force is removed.
the interatomic forces tend to drive them back

to their positions. Thus the body regains
its ‘Eﬂé_zg ;i{apcmlze. The restoring
mechanism can be visualised by taking a model

of spring-ball system shown in the Fig. 9.1. Here
the balls represent atoms and springs represent

interatomic forces.
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Fig. 9.1 Spring-ball model for the illustration of elastic
behaviour of solids.

If you try to displace any ball from its

equilibrium position, the spring system tries to

restore the ball back to its original position. Thus
¢ behaviour of solids can be explained in

<glasti
terms of microscopic nature of the solid. Robert
Hooke, an Englis| e.anEngushL—“{_‘l‘physicist 1635 - 1703AD)
Performed experiments on springs and found
that the elongation (change in the length)

produced in a body is proportional to the applied
force or load. In 1676, he presented his law of
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elasticity, now called Hooke's lizy
W

study about it In Section gTTh e o
w, 1s one of | Is lay, hi

Bovle's law, s one ol the calegy o AW,
relationships In science. It g very I%M
now the behaviour of the mﬂtempnnﬂnt
various kinds of load from thel'las un,
engineering dﬂg']. Cont,

9.3 STRESS AND STRAIN

When a force Is applied on body, i "
to a small or large extent depep defy ;
nature of the material of the bodg Upop
magnitude of the deforming fo: a
deformation may not be noticeape wce.
many materials but it is there, When Sug]}
subjected to a deforming force, a r “-Sto:nbody
is developed in the body. This TeStoring fory
equallllIlg gnitude but op posite In h—i Orce
the applied force. The restoring fm'Ce; )
3 !ltc W1 as Stress. § Sthe o ‘ ' ‘u N
[€éd Ol Cross SCCﬂon 0 2 '

body,

1 Magnitude of the stress = 1"«‘/;4_1 9
e Sl unit 0 I rpaScaj'[

and its dimensional formula is | ML 177}
There are thge ways in which a sofi
change its dimensions when an external f,

acts on it. These are shown in Fig, 9.9
Fig.9.2(a), a cylinder is stretched by two eq
forces applied normal to its cross-sectional arej
The restoring force per unit area in this cqg
is called tensile stress. If the cylinder
compressed under the action of applied forceg
the restoring force per unit area is known g
compressive stress. Tensile or compress;
stress can also be termed as longitudinal stre
In both the cases, there is a change in fh
length of the cylinder. The change in the lengt
AL to the original length L of the body (cylinda
in this case) is known as Al&nitudinal strain,

/

1 AL

| Longitudinal strain = —= | 9.3
Mo T — __.L/’

However, if two equal and opposite deforming
forces are applied parallel to the cross-sectiond
area of the cylinder, as shown in Fig. 9.20l
there is relative displacement between th
opposite faces of the cylinder. The restoring forte

per unit area developed due to the a}l)p]liz‘:
tia

tangential force is known as tangent™
shearing stress.

"
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Robert Hooke
(1635 - 1703 A.D.)
oke was born on July 18, 1635 in Freshwaler, Isle of Wight. He was

Rubﬂ; tllit)- most brilliant and versatile seventeenth century English scientists.
0 'ct::'(endcd Oxford University bul never graduated. Yel he was an extremely
::Se;ned inventor, inslmmml-nmlwr and bullding designer. He assisted Robert
govle i the construction of Unylmn. alr pump. In 1662, he was appointed as
Cu'mtor of Experiments to the newly founded Royal Soclety. In 1665, he became

fessor of Geometry in Gresham College where he carried out his astronomi-

pservations. He built a Gregorian reflecting telescope: discovered the [ifth
i the trapezium “"d_ an asterism in the mnsu'llulin_n Orion; suggested that
") upiter rotates on its axis; plotted .dvluiled sketches of Mars which were later
used in the 19" century lo‘delcrmuw the planet's rate of rotation; stated the
jpverse square law to (|t‘st‘l’1bt" planetary motion, which Newton modified later
otc. He was elected Fellow of Royal Society and also served as the Society’s

retary from 1667 to 1682. In his series of observations presented in Micrographia, he suggested
wave theory of light and first used the word cell’ in a biological context as a result of his studies of cork.
Robert Hooke is best known to physicists for his discovery of law of elasticity: Ut tensio, sic vis (This
is a Latin expression and it means as the distortion, so the force). This law laid the basis for studies of

2 S

stress and strain and for understanding the elastic materials. ‘&d\ s ‘%
S
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As a result of applied tangential force, there It can also be visualised, when a book is
is a relative displacement Ax between opposite  pressed with the hand and pushed horizontally,
faces of the cylinder as shown in the Fig. 9.2(b).  as shown in Fig. 9.2 (c). <
The strain so produced is known as shearing Thus, shearing strain = tan 6 =@ 9.4)
strain and it is defined as the ratio of relative In Fig. 9.2 (d), a solid sphere placed in the

displacement of the faces Ax to the length of fluid under high pressure is com ressed
the cylinder L. uniformily on all sides. The force applied by the

f fluid acts in perpendicular direction at each
X oint of the surf]ace and the body is said To be
( Shearing strain = =~ = tana (9.3) ﬁ'r‘ﬁ"m"'ﬁ'}'fﬂ'ﬁ‘lmé‘é'ﬁ'mpressjgn. yl‘his leads to
decrease S volume without any change of
where 6 is the angular displacement of the its geometrical shape.
cylinder from the vertical (original position of e body develops internal restoring forces
the cylinder). Usually 6 is very small, tan @ that are equal and opposite to the forces applied
is nearly equal to angle 6, (if 8 = 10°, for by the fluid (the body restores its original shape

example, there is only 1% difference between 6 and size when taken out from the fluid). The
in’d—t-a—n—ﬂ‘ - internal restoring force per unit area in this case

TL
38!

(a) (b) (c) @

Fig.9.2 (@A cylindrical body under tensile stress elongates byAL (b) Shearing stress on a cylinder deforming it by
an angle 6 (c) A body subjected to shearing stress (d) A solid body under a stress normal to the surface at
every point (hydraulic stress). The volumetric strain is AV/ V, but there is no change in shape.

—




{s known as hydraulic stress and In magnitude
is equal to the hydraulic pressure (applied force

per unit area).

The strain produced by a hydraulic pressure
s called volume strain and is defined as the
ratio of change In volume (AW to the original

volume (V).

—

Volume strain =

““Since the sIr ratio of change in
dimension to the original dimension, it has no

units or dimensional formula.

AV

V

(9.5)

9.4 HOOKE'S LAW

Stress and strain take different forms in the
situations depicted in the Fig. 19.2). For small
deformations the stress and strain are
proportional to each other. This is known as

Hooke's law.
Thus,

stress o strain

ss=kx s (9.6)
wheréd_lis the proportionality constant and is
known as modulus of elasticity.

Hooke's 1aw Is an empiricattaw and is found
there

to be valid for most materials. However,
are some materials which do not exhibits this

linear relationship.

9.8 STRESS-STRAIN CURVE

The relation between the stress and the strain
ss can be

erial under tensile stre
tally. In a standard test of

a test cylinder or a wire is
stretched by an applied force. The fractional
change in length (the strain) and the applied
force needed to cause the strain are recorded.
The applied force is gradually increased in steps
and the change in length is noted. A graph is
plotted between the stress (which is equal in
magnitude to the applied force per unit area)
and the strain produced. A typical graph for a
metal is shown in Fig. 9.3. Analogous graphs
for compression and shear stre

0 2
material to material. These curves help us to

understand how a given material deforms with
ncreasing Inads. From the graph. we can see
hat in the region between O to A, the curve is

for a given mat
found experimen
tensile properties,

m

inear. In this region, Hooke's law is obeyed.

—

The body regains Its original dimensiong y,
the applied force 18 removed. In this region, %

solid behaves as an elastic body.

Proportional limit
Elastic limit
or yield poin

D

S,

E
Fracture
: C point
A Plastic behaviour

I
|
!
I
[}

]

\ Elastic behaviour

Stress —»

| _-Permanent set

<1%
Fig. 9.3 A typical stress-strain curvé for a metal.

In the region from A to B. stress and straj

are not proportional. Nevertheless, the bady s§
on when the log

reFarns fo its original dimensi
is removed. The point B in the curve is know

as yield point (also known as elastic limit) ap
g stress is known as

the correspondin
If the load is Increase urther, the stres
developed exceeds the yield strength and straj
increases rapidly even for a small change it
fthe curve between B an

stress. The portion 0
D shows this. When the load is removed, say:

some point C be ,
- 111 this cas

not re S
_even when the stress 1S zero, the strain is n
s said to have a permanet

g_cr_o.'_The material i
set. The deformation is said to be plasti

. “deformation. The point D on the graph s th
ultimate tensile strength (S,) of the materia
Beyond this point, additional strain is.produce

even by a £ewdu0,¢&gaeligdf9rcs;am_h%
occurs at point E. If the ultimate strength
fracture points D and E are close, the mater

is said to be brittle. If they are far apart, i

material is said to be ductile.
As stated earlier, the stress-strain behaviot

varies from material to material. For exampl

rubber can be pulled to several times its origin
length and still returns to its origna’ s ap
Fig. 0.1 Shows siress-strain curve Tor /e elast

_ Note (h

tissue of aorta, present in the heart
he materi

altRought elasfic region s very large. !
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Stress-strain curve for the elastic tissue of

. Aorta, the large tube (vessel) carrying blood
from the heart.

does not obey Hooke's law over most of the
region. Secondly, there is no well defined plastic
region. Substances like tissue of aorta, rubber
ete. which can be stretched to cause large strains

are called elastomers.
P i

Fig. 9.4

9.6 ELASTIC MODULI

The pro ortional £ within the elastic limit
of the stress-strain curve (region OA in Fig. 9.3)
1 and

is of great importance for s {

manufacturing engineering designs. The ratio
of s : us of elasticity,

is found to be a characteristic of the material.

Table 9.1 Young's mod:

T TR Tt - A

Aluminium 70
Copper 120
Iron (wrought) 190
Steel 200
Bone

(Tensile) 16
(Compressive) 9

# substance testeamm—'

)T - ——

" having the same cross-sectional area

*

—m N T ! ——
R T T

9.6.1 Young's Modulus
Experimental observation show that for a given

material, the maggltude of the strain Eroaucea
is same whether the stress Is tensil€
compressive. The ratio of fensile (or compressﬁel

stress (g to the longitudinal strain () is defined as
Young's modulus and is denoted by the symbol Y.

— ey
= 2
= &

s

From Egs. (9.1) and (9.2), we have

9.7)

Y= (F/A)/(AL/L)
=(Fx L) /(Ax AL) 9.8)

Since strain is a dimensionless quantity, the
that of

unit of Young's modulus is the same as

stress ie., N m-2 or Pascal (Pa). Table 9.1 gives
the values of Young's modal and yield strengths
of some materials.

From the data given in Table 9.1, it is noticed
that for metals Young's modull are large.
Therefore, these materials requ
to produce small change in length. To increase
the length of a thin steel wire 0f0.1 cm? cross-
sectional area by 0.1%, a force of 2000 N is
required. The force required to produce the same

strain in aluminium, br_a_S§ and copper wires
are 690N,

900.N and 1100 N respectively. It means that

steel is more elastic_than copper, brass and
aluminium. It is for this reason that steel 1s

Jli and yield strengths of some materials.

|
18 20 !
20 40 -
17 33 |
30 50 |
| 12
12



preferred in heavy-duty machines and in
structural designs. Wood, bone, concrete and
glass have rather small Young's modull™

Example 9.1 A structural steel rod hasa
radius of 10 mm and a length of 1.0 m. A
100 kN force stretches it along its length.
Calculate (a) siress, (b) elongation, and (c)
strain on the rod. Young's modulus, of
structural steel is 2.0 x 10" Nm2,

Answer We assume that the rod is held by a
clamp at one end, and the force Fis applied at
the other end, parallel to the length of the rod.
Then the stress on the rod is given by

F F

g

Stress = —
A 7r

100x10°N

3.14x(10%m)*

=3.18 x 108 N m?
The elongation, -
(F/A)L
= — A
AL Y | 517

(3.18x10°Nm™) 1m

2x10"'Nm™2

1.59x 10° m
=1.59 mm

The strain is given by

Strain =AL/L :
=(1.59 x 103 m)/(1m)
=1.59x 1073
=0.16 % 4

Example 9.2 A copper wire of length 2.2
m and a steel wire of length 1.6 m, both of
diameter 3.0 mm, are connected end to end.
When stretched by a load, the net
elongation is found to be 0.70 mm. Obtain
the load applied.

Answer The copper and steel wires are under

a tensile stress because they have the same

eload | area

of cross-section A. From Eq. (9.7) we have stress
= strain x Young's modulus. Therefore
W/A=Y x (AL /L) =Y, x (AL/L)

where the subscripts ¢ and refe
and stainless steel respectively, o Tt
AL/AL=(Y/Y)x (L /L)
Given L =2.2 m, L =1.6m,
From Table 9.1 Y =11x 101 N.m2
Y =2.0x 101 N o'
AL /AL =(2.0x 10"/1.1x 10')x (2'2/1-6')
The total elongation is given to be K
AL +AL = 7.0 x 10
Solving the above equations,
AL =50 x 10*m, and AL =2.0 x Jp4
Therefore
W =(Ax Y,x AL)/L, |
=n(L.5x 1092x [(5.0x 10x 1.1x 10
=1.8x 102N !

*Example 9.3 In a human pyramid in,
circus, the entire weight of the balancef
group is supported by the legs ofil’
performer who is lying on his back (§§
shown in Fig. 9.5). The combined masg
all the persons performing the act, and {hg
tables, plaques etc. involved is 280 kg, Tg
mass of the performer lying on his backafl
the bottom of the pyramid is 60 kg. Eag
thighbone (femur) of this performer hag|
length of 50 cm and an effective radiugg
2.0 cm. Determine the amount by th §
each thighbone gets compressed under

extra load.

Fig. 9.5 Human pyramid in @ circus: -

4
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Total mass of all the performers,  willlbelac anled by an equal change In
f\nsu'frlaques etc. = 280 kg experimental wire, (We sha

tables: pof the performer = 60 kg mperature effects in detall in Chapter 11.)

Mass supported by the legs of the performer

Mass id —
ttom of the pyram [
attl‘lebo_ﬁo’220“g A“ ' “B
- orted mass
wdghN“ms supp | "
,2201%5“’1-"'220" 9.8 N=2156 N, ‘l};fmermoe :"xr:nmm

t supported by each thighbone of the
ervf/gerz 4 (2156) N = 1078 N.
P From Table 9.1, the Young's modulus for bone

by
1s V17 5 4 x 10°N m2,

Length of each thighbone L= 0.5 m
the radius of thighbone = 2.0 cm
Thus the cross-sectional area of the thighbone
A =nx(2X 1022 m?=1.26x 103 m?,
Using Eq. (9.8), the compression in each
thighbone (AL) can be computed as
AL = [(FxL)/(Yx A
= [(1078x 0.5)/(9.4x 10°x 1.26x 103)]

!.!.F.l.lL'l

= 4.55x 10°mor4.55x% 103 cm. |
This is a very small change! The fractional :
decrease in the rfEEEBone is AL/L = 0.000091

or 0.0091%. t

9.6.2 lDetermination of Young’s Modulus of
the Material of a Wire o Fig. 9.6 An arrangement for the determination of
A typical experimental arrangement to determine A0ng.S W the St
the Young's motutus of a material of wive under Both the reference and experimental wires are
tension is shown in Fig. 9.6. It consists of two -~
given an initial small load to keep the wires
long straight wires of same length and equal 5= === metn SRR SEST_ o :
straight and the vernier rea is noted. Now
radius suspended side by side from a fixed rigid T =1
support, The wire A (called the reference wire) P € 18 gradually 10 with
carries a millimetre main scale M and a pan to more weights to bring it under a tensile stress
place a welght. The Wire T (called the and the vernier reading is noted again. The
eXPEIIIGl ire) of uniform area of cross-  GLIerence between two vernier readings gives
sectlon also carries a pan in which known the elongation produced in the wire. Let rand L
weights can be placed. A vernier scale V is be the initial radius and length of the
atfached to a pointer at The bottom of the CXPerimental wire, respectively. Then the area
perimental wire B, and the i scale ™ is  ©f Cross-section of the wire would be xr. Let M
%ﬁmgmwke A. Theelghts placed be the mass that produced an elongation AL in
inl the pamexe owriward force and stretch L€ Wire. Thus the applied force is equal to Mg,
the experimental wire under a tensile stress. The ~ WHere gis the acceleration due to gravity. From
elongation of the wire (increase in length) 1s  £4- (9-:8), the Young's modulus of the material
measured by the vernier arrangement. The ©f the experimental wire is given by
reference wire is used to compensate for an
; Ire is 1 y
change_m en at may occur due to change ¥=2 _ ﬁgi
M temperature, since any chan st} e ar AL
OftE_Em erence wire due to temperature change =Mgx L/(rnr x AL) (9.9)
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Shear modulus is N m™2 or Pa. The
shear moduli of a few common materials are
given in Table 9.2. It can be seen that shear _
modulus (ormodulus of rigidity) is generally 1esS e know that shearing strain = (

than 2 (from Table ST Formost Tperefore the displacement Axi-‘f(/sl#

T f:l:}m

- theay Mectu L)
'n..a hear Moduwlus merdmm
The ratio of shearing stress to the corresponding =(9.4 10 y
shearing strain Is called the shear modulus of =180 x 1qe N/0'°5 o
the material and is represented by G. It is also 2 T g
called the modulus of rigidity. F = N -
G = shearing stress (q)/shearing strain ; Y
G = (F/A/(Ax/L) | ; B I
= (Fx L)/(Ax A9 (9.10) : ; P
Stmilarly, from Eq. (9.4) Socm | 1 ro
G =(F/A)/0 1 g (j
=F/(Ax 6) (9.11) I ! F
The shearing U'cssq.canalsobeexpresseda? ----------- /
(9.12 :

Stregg |
6 -2 tresg y 1l -
= (1.8 108N m? x 0.5m)/(5.6 x 190y

=1.6x 10*m=0.16 mm

Table 8.2 Shear moduli (G) of some common v
materials 9.6.4 Bulk Modulus ¥
In Section (9.3), we have seen that When a 1, ﬁ
is submerged in a fluid, it undergoes hyd:a
stress (equal in_magnitude to the hyd T
pressure). This leads to the decrease iy :

volume of the body thus producing a strajn . ]
volume strain [Eq. (9.5)]. The ratio of hydra
stress to the corresponding hydraulic stray
called bullk quujg,s! - It is denoted by symbo
| B=-p/av/v) | 0.1
The negative sign indicates the fact that w
an increase in pressure, a decrease in volun
occurs. That is, if p is positive, AV is negatiy

*
’/
/\ . b — © iR 4
/ (’f\ﬁ r Jrample 9.4 A square lead'slab of side 50 Jbulk modulus B is always positive. SI unit

¢ Thus for a system in equilibrium, the value
/. '"A Am and thi kness 10 cm is subject to a bulk modulus is the same as that of pressu
6 shearing force (on its narrow face) of 9.0 x Le., N m2 or Pa. The bulk moduli of a fi
10*N. The lower edge is riveted to the [loor. common materials are given in Table 9.3.
7 How much will the upper edge be displaced? The reciprocal of the bulk modulus is
. compressibility and is denoted by k. It is d€l

Answer The lead slab is fixed and the force is as-the fractional change in volume per

applied parallel to the narrow face as shown in  increase in pressure.
Fig. 9.7. The area of the face parallel to which [k= (1/BL= - (1/Ap) x (AV/V)
It can be seen from the data given in

this force is applied is
A =50cmx 10cm 9.3 that the bulk moduli for solids ar
=0.5mx 0.1 m larger than for liquids, which are again n[l i
= 0.05 m? larger than the bulk modulus for gases

o
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Thus solids are least compressible whereas gases
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pulk moduli (B) of some common
Materials

B (10° N m™? or GPa)
» A,; ~

260

160

are most comgressi e. :
times more compressible than solids! Gases have
S

&

Type of

. stress

%9.4 Stress, strain and various elastic moduli

239

Yy X

¢. The incompressibility of the

Sofie 15 primiarily due to the tight coupling

between the neighbouring atoms. The molecules
in liquids are also bound with their neighbours
but not as strong as in solids. Molecules in gases
are very poorly coupled to their neighbours.

Table 9.4 shows the varlous types of stress,
strain, elastic moduli, and the applicable state
of matter at a glance.

ample 9.5 'The average depth of Indian
Ocean is about 3000 m. Calculate the
fractional compression, AV/V; of water at
the bottom of the ocean, given that the bulk
modulus of water is 2.2 x 10° N nr?: (Take

g =10ms?

Answer The pressure exerted by a 3000 m
column of water on the bottom layer

p=hpg =3000m x 1000 kg m~ x 10 m s2
=3 x 107 kgm! s
=3 x 10’ Nm?
Fractional compression AV/V, is
AV/V =stress/B  =(3x 107Nm?)/(2.2x 10°Nnr?)
=1.36x 102%0r 1.36 % <«

Name of
modulus



9.7 APPLICATIONS OF ELASTIC

BEHAVIOUR OF MATERIALS

The elastic behaviour of materials plays an
important role in everyday life. All engineering
designs require precise knowledge of the elastic
behaviour of materials. For example while
designing a building, the structural design of
the columns, beams and supports require
knowledge of strength of materials used. Have
you ever thought why the beams used in
construction of bridges, as supports etc. have a
cross-section of the type I? Why does a heap of
sand or a hill have a pyramidal shape? Answers
to these questions can be obtained from the
study of structural engineering which is based
on concepts developed here.

Cranes used for lifting and moving heavy loads
from one place to another have a thick metal rope
to which the load is attached. The rope is pulled
up using pulleys and motors. Suppose we want
to make a crane, which has a lifting capacity of
10 tonnes or metric tons (1 metric ton = 1000
kg). How thick should the steel rope be? We
obviously want that the load does not deform the
rope permanently. Therefore, the extension
should not exceed the elastic limit. From Table
9.1, we find that mild steel has a yield strength
(S,) of about 300 x 108 N m2. Thus, the area of
cross-section (A) of the rope should at least be

A2W/S, = Mg/S, (9.15)

= (10*kgx 10ms?)/(300x 10°Nm?)
= 3.3x 104 m?
corresponding to a radius of about 1 ¢cm for a
rope of circular cross-section. Generally a large
margin of safety (of about a factor of ten in the

load) is provided. ’Iths
abﬂ!_m;mmmmmglmof
this radius w d. So
the ropes ar made of a number of thin
wrires Dralde 108 i pigEails, Tor gase
in man P

A bridge has to be designed such that it can
withstand the load of the flowing traffic, the force
of winds and its own weight. Similarly, in the
design of buildings use of beams and columns
is very common. In both the cases, the
overcoming of the problem of bending of beam
under a load is of prime importance. The beam
should not bend too much or break. Let us
consider the case of a beam loaded at the centre
and supported near its ends as shown in
Fig. 9.8. Abar of length [, breadth b, and depth d

when loaded at the centre
on amount iven by
Du W 3/ (4bd?y)

mo._J

Fig. 9.8 Abeamsu
This relation can be deriveq

have already learnt and a Jjtte cs
Eq. (9.16), we see that to reduce
a given load, one should
large Youn,
11 [CASLIE L 4 I'a
bis more effective in reducing
575 proportional to d 3 and only tg p1ras:S
the length [ of the span should pe i Coyy
possible). But on increasing the gane;. M2

the load is exactly at the right Plac:I;glifﬁ“’ﬂ
Cult

arrange in a bridge with movin

bar may bend as shown in égt.r;fg%)ﬂled
called buckling. To avoid this, 4 c'oms ‘
compromise is the cross-sectional ghy l;;}m
in Fig. 9.9(c). This section provides 3 large| 4
bearing surface and enough depth to preye
bending. This shape reduces the weight of
beam withéUt sacrificing the strength ang e
reduces the cost. '

=
|

g w
alcu]u:at !
the ben d 0

b

(a) (b) (c)

Different cross-sectional shapes 9t
" beam. (a) Rectangular section of a bl
““% (b) A thin bar and how it can budofﬁ
(c) Commonly used section for al

bearing bar.
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ars or columns is also very common
and bridges. A pillar with rounded
~ds as SOV in Fig. 9.10(a) supports less load
- t with a distributed shape at the ends
:‘ig 9.100)l: The precise design of a bridge
'€ “sutlding has to take into account

ditions under which it will function, the

conditl
z:t and long period, reliability of usable

aterials etC:

(a) (b)

pillars or columns: (a) a pillar with
rounded ends, (b) Pillar with distributed

ends.

ig. 9.10

also be provided by considering the elastic
roperties o F 1l
under uniform compression an 8 provides

ome shearing stress to the rocks under which
they can flow. The stress due

: Qm {EE Ebould be less than the cggpal
8 e rocks flow.

hearing stress at whic .

AT the bottom of a moun t h, the
force per unit area due to the weight of the
mountain is hpg where p is the density of the
material of the mountain and g is the
acceleration due to gravity. The materfal at the
bottom experiences this force in the vertical

1, and the sides of the mountain are iree.
Therefore sure 0
compression. There is a shear component,
approximately hog itself, Now the elastic limit
for a typical rock is 30 x 107 N m2. Equating
this to hpg, with p =3 x 10° kg m gives

hpg =30 x 10’ Nm?. Or
h = 30x 10’ Nm?/(@3x 10°kgm®x 10ms?
=10 km
which is more than the height of Mt. Everest!
I

SUMMARY

1.  Stressis the restoring force per unit area
In general there are three types of stres:

and strain is the fractional change in dimension.
ses (a) tensile stress — longitudinal stress

(associated with stretching) or compressive stress (associated with compression),
(b) shearing stress, and (c) hydraulic stress.

2.  For small deformations,

This is known as Hooke's law. The constant of pro

elasticity. Three elastic moduli viz., Young's modulus, s
e elastic behaviour of objects as they respond to deforming

are used to describe th
forces that act on them.

stress is directly proportional to the strain for many materials.

portionality is called modulus of
hear modulus and bulk modulus

A class of solids called elastomers does not obey Hooke's law.

3. Whenan object is under tension or compression,

F/A = YAL/L
where AL/Lis the tensile or compres
applied force causing the strain, A is
(perpendicular to A

4, Apair of forces when applied parallel to the
that the upper face moves sideways wit
displacement AL of the upper face is perpendi
deformation is called shear and the correspon
type of stress is possible only in solids.

the Hooke's law takes the form

sive strain of the object, Fis the magnitude of the
the cross-sectional area over which F is applied

) and Y is the Young's modulus for the object. The stress is F/A.

upper and lower faces, the solid deforms so
h respect to the lower. The horizontal
cular to the vertical height L. This type of
ding stress is the shearing stress. This

In this kind of deformation the Hooke's law takes the form

F/A=Gx AL/L
where AL is the displacemen
and G is the shear modulus.

t of one end of object in the direction of the applied force F,



i e %}L;\. %
5. When an object undergoes hydraulle compression due to a stregs “Cﬁe q
surrounding fluld, the Hooke's law takes the form by A

p=BAV/W,

where p Is the pressure (hydraull
volume strain) s the absolute fra

¢ stress) on the object due to the flyyq, AV

ctional change In the object’s volume du’gl; &he

pressure and B {s the bulk modulus of the object. at

| POINTS TO PONDER

|

| , { ncler the aptin. -

V . <pencled from celing under the dClon of 4 ""Gigf

! i DA e Wi S e e | by the ceiling on it 5 . >t
‘ (F) suspended from ils other end, the lorce il S 2 s Sliugl]

4 & danad
e o e B at any cross-section A of Nd
opposite to the weight. How: 2

, ver, the tension S WTe is jyyq¢ F
nd e PR (ensile siressawhichas cqualfo the fension per unit area g Plllalt
[ A d, e ’e - - )t - 0
7 —

s

,_}d./"\lic Young's modulus and sl
have lengths and shapes.

A~ Bulk modulys js relevani [or solids, liquid and gases. It refers to the change in v,
\'.mmy part of the bddy is under the uniform stress so that the shape of tp,

/cmuins unchapged.

. Melals have larger v

- : i the linear nart of stress-strain curve.
Hooke's law is valid only in the linear part of stress

_modulus are relevant only for solids since

e

only soljgg

olume
€ body

MJ;XQ.}JQ&QE{QUI“S than alloys and clastomers, A Materig]

N el
1 lus requires a large iorce to produce smal] P
| with large value of Young's modulus requires a large lorce to produce small changes i

its length.

5

In general, a deforming force in one direction can produce strains in other directions
also. The proportionality between stress and strain in such situati

BV just one elastic constant. For example,

s

UINO0T DE -
for a wire under NIE v
lateral dimensions (radius ol cross section) will undergo a small change. which is described
by another elastic constant of the material (called Poisson ratio).
,/.(Stress is not a veclor quantity sigce,_ unlike a force, the stress cannot be assigned a
specilic direction. Force acting on the portion of a body on a specified side of a section

has a definite direction.

EXERCISES

A steel wire of length 4.7 m and cross-sectional area 3.0 x 10

1 5
m? stretches by the
/ Same amount as a copper wire of len o

@,
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[
300 |
~250 % /
E
~°z 200 — 4 f—
g 150
g 100 v
A 50—
0 | |
0 0001 0002 0003 0.004
Strain ‘ 0?
Fig. 9.11 :r’(
The stress-strain graphs for materials A and B are shown in Fig. 9.12.
1k ' Y
% A 2
B
5 g
Stain Strain -~
Flg 9.12 .

Two wires of diameter 0.25 cm, one made of steel and the other made of brass are
loaded as shown in Fig. 9.13. The unloaded length of steel wire is 1.5 m and that of
brass wire is 1.0 m. Compute the elongations of the steel and the brass wires.

VA A

1.5m
Steel

C3 40kg

1.0m
Brass

[ ] 60ke

Fig. 9.13




of an aluminium cube is 10
cm long. One
ea:’_‘;‘ﬂm A mass of 100 kg is then atmncged to the opposite face of the cy beed tog
Four iden us of aluminium is 26 GPa. What is the vertical deflection of this fagan ¢
50,000 kgtlcal hollow cylindrical columns of mild steel support a big structure of ol
s The inner and outer radi of each columa &7¢ 30 and 60 cm respecty,
iy 'un:nhe load distribution to be uniform. calculate the compressional gt,.u:l .
9.8 A piece of cop
pper having a rectangular cross-section of 16.2 mmx 19.1 mm is py;
ension with 44,500 N force, producing only elastic deformation. Calculate the reg ‘Sgng
cable with a radius of 1. supports a chairlift at a ski area. If the
tress is not to exceed 10° N ,Lg,c;rnhat l:spothe maximum load the cable can support
O A rigid bar of mass 15 kg is supported symmetrlcaﬂy by three wires each 2.0 m lon?
at each end are of copper and the middle one 18 of iron. Determine the ratiqog gi‘
eir diameters if each is to have the same tensior. o
1 A 14.5 kg mass, fastened to the end of a steel wire of unstretched length 1.0 m,
in a vertical circle with an angular velocity of 2 rev/s at the bottom of the cired
065 cm?. Calculate the elongation of the Wl:e

of

en the mass is at the lowest point of itS path.
e bulk modulus of water from the following data: Initial volume = 1099
litre, Pressure increase = 100.0 atm (1 atm = 1.013 X 10° Pa), Final volume = 1005
e the bulk modulus of water with that of air (at constant temperature.]
terms why the ratio s sO large. . .
is the density of water at a depth where pressure is 80.0 atm, given that itg
ace is 1.03 x 103 kg m™?

a glass slab, when subjected to a hydraulic

at the
fractional change in volume of
of 10 atm.
of a solid copper cube, 10 cm on an edge, when

e the volume contraction
a hydraulic pressure of 7.0 x 10° Pa.
ould the pressurc on a litre of water be changed to compress it by 0.10%?

rystals of diamond, with the shape as shown in
behaviour of materials under very high pressures..

Anvils made of single c
have a diameter of 0.50 mm, and the wide ends

Fig. 9.14, are used to investigate

the anvil?
: R ik h ¥

Flat faces at the narrow end of the anvil
are subjected to a compressional force of 50,000 N. What is the pressure at the tip o
L. W

e S o x ppe———
— - - ~ _ Ty N
face of the cube is firmly fiy,
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6 A rod of length 1.05 m having negligible mass {s supported at its ends by two wires of
steel (wire A) apd aluminium (wiré B) of equal lengths as shown In
9.15. The cro8s-sectional areas of ‘wires A and B are 1.0 mm? and 2,0 mm?,

1.05m

? s/

Fig. 9.15
6 A mild steel wire of length 1.0 m and cross-sectional area 0.50 x 107 cm? is
stretched, well within its elastic limit, horizontally between two pillars. A mass of 100
g Is suspended from the mid-point of the wire. Calculate the depression at the mid-
point. . ‘

9.20 Two strips of metal are riveted together at their ends by four rivets, each of diameter
6.0 mmWhat is the maximum tension that can be exerted by the riveted strip if the
shy - stress on the rivet is not to exceed 6.9 x 107 Pa? Assume that each rivet is to

one quarter of the load.

1 The Marina trench is located in the Pacific Ocean, and at one place it is nearly eleven

km beneath the surface of water. The water pressure at the bottom of the trench is

about 1.1 x 108 Pa. A steel ball of initial volume 0.32 m? is dropped into the ocean and
falls to the bottom of the trench. What is the change in the volume of the ball when it

reaches to the bottom?
/
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