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3.1 In TRODUCTION

Motion is common to everything in the universe. We walk,
Tun and ride a bicycle. Even when we are sleeping, air moves
into and out of our lungs and blood flows in arteries and

- Veins. We see leaves falling from trees and water flowing

down a dam. Automobiles and planes carry people from one
Place to the other. The earth rotates once every twenty-four

- hours and revolves round the sun once in a year. The sun

itself is in motion in the Milky Way, which is again moving

within its local group of galaxies.
 Motion is change in position of an object with time: How

does the position change with time ? In this chapter, we shall

learn how to describe motion. For this, we develop the

concepts of velocity and acceleration. We shali confine

-ourselves to the study of motion of objects along a straight

line, also known as rectilinear motion. For the case of
rectilinear motion with uniform acceleration, a set of simple
equations can be obtained. Finally, to understand the relative
nature of motion, we introduce the concept of relative velocity.

In our discussions, _we shall treat the objects in motion as
point objects. This approximation is valid so-far-as-the.size
of the'object is much smaller than the distance it moves ig a
reasonable duration of time. In a good number of situations
in réal-life, the size of objects can be neglected and they can
be considered as point-like objects without much error.

In Kinematics, we study ways to describe motion without -
going into the causes of motion. What causes motion
described in this chapter and the next chapter forms the
subject matter of Chapter 5.

3.2 POSITION, PATH LENGTH AND DISPLACEMENT

Earlier you learnt that motion is change in position of an
object with time. In order to specify position, we need to use
a reference point and a set of axes. It is convenient to choose



Description of an event

of reference chosen for the description

example. when you
bing the

a road. you are descri
to a frame of reference attached to you or
o a frame of reference

ground. But with respect t
attached with a person sitting in the car. the

car is at rest. ;
To describe motion along 2 straight line, wWe
say X-axis, SO that it

can choose an axis,
coincides with the path of the object. We then
measure the position of the object with reference

with the P

' pisplacemﬁnt

ath of the car's motion
the point from where thand Orad
moving: i.e. the carwas at x=0 at tf Car gl
Let P. G and R represent the POSIU(; 0
at du‘[erent instants of time. C°nsidns of
of motion: In the first case, the Cau_t:r X

p. Then the distance moved bl;l

A 60 m. This distan
= +360 m. s dis e o
+ ce is calleq ¢, ¥

the axis a3

oP

lenlth travcrsed by the car. In

case. the moves from O to P and :—hhe Seos
Nme

pack from pto Q. Duringthis course ™
e au’l length tJ‘aVCrSed is OP + PQ Sf Mo ._
+ (+120 m) = + 480 m. Path length i" + 38y ¢
quarlllty _ a quantity that has a Sasg
only and no direction (see Chapter 4)

It is useful to define another 3
displacement as the change in po;:an“ _-
X, and x, be the positions of an object atcm.
and t. Then its displacement, denoted by“mt'
time At = (£, t). is given by the 7
between the final and initial posttions
Ax= X, — X v

1
e use the Greek letter delta (4) to ;
in a quantity.) denote d

directior—St Hties—are
vectors, You will read about vectors i
chapter. Presently, we are dealing with 5

ght line (also called rec

along a strai R
motion) only. rlg,gz.le-djmansional motien, the

to a conveniently chosen origin, say O, as shown  are o
in Fig. 3-1-P051ﬁ0ﬂ5t0theﬂ8ht0foafetaken ward and d wnward) ‘hich an object
_as positive and to the left of O, as negative. ' ;Jnlzw‘é j‘m”d’d ’ﬁ.‘g'se t%o‘éi?ecz?;: _31_1‘2“% i o
Following this convention, the position . sp‘e-éllfié'd' by + and — signs - Fca{.l...-., be
coordinates of point P and Q in Fig. 3.1 are +360 %ﬁlﬁé ‘em‘““"e‘ﬁ‘f'afme carin movjn- g fmmor e(:):a‘m pki-
m and +240 m. Similarly. the position coordinate Ax=x — X = (+360 0 i
of point R is 120 m- - 1 m) -0 i e
ekl ;I‘he displgcement has a magnitude of 360m
s directed in the positive x direction as in
I?;nsiﬂer the motion of a car along a straight by the + sign. Similarly, the displacement of
e. We choose the x-a)d; such that it coincides  car from P to Q is 240 m— y'm = - 120m
R © .0 | ~ 3
1301""="ll|?|"f',
= = = -5 > L |
20 80 40 <0 40 80 120 160 200 240 280 320 33_'30 400 ™
-~ v +x' 3

Fig. 3.1
g x-axis, origin and positions of a car at different times.
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negative sign lndicat&? thgf direction of

dlsplaccment. Thus, it is not necessary (o use

-yeetor notation for discussing motion of objects
The m.lﬂl-!t"ﬂe of qyphcement may or may
ce ed to 1len .

For example, for motion of the car
;,:—Igf[? P, the path length is +360 m and the
_displacement is +360 m. In this case, the
magnitude of displacement (360 m) is equal to
the path length (360 m). But consider the motion

of the car from O to P and back to Q. In this

case, the path length = (+360 m) + (+120 m) = +
480 m. However. the displacement = (+240 m) -
(0 m) = + 240 m. Thus, the magnitude of
displacement (240 m) is not equal to the path

length (480 m). -
The ma

itude of the dis
‘course of motion " be zero but the
¢orresponding path 1

]

o—L 1 1 1 11
10 20 30 40 50 60 ()

(@)

§ - RPN AT . 'F’b’i-"
example, if the car starts from O, goes to P and ;

then returns to O. the final position coincides
with the initial position and the displacement
is zero. However. the path length of this journey
iIs OP + PO =360 m + 360 m = 720 m.

Motion of an object can be represented by a
position-time graph as you have already learnt
about it. Such a graph is a powerful tool to .
represent and analyse different aspects of
motion of an object. For motion along a straight
line, say X-axis, only x-coordinate varies with
time and we have an x-t graph. Let us first
consider the simple case in which an object is
stationary. e.g. a car standing still at x= 40 m.
The position-time graph is a straight line parallel
to the time axis, as shown in Fig. 3.2(a).

If an object moving along the straight line
covers equal distances in equal intervals of
time, it is said to be in uniform motion along a

| straight line. Fig. 3.2(b) shows the position-time

graph of such a motion.
X A
(m)
0 >
' t(s)
(b)

Fig. 3.2 Position-time graph of (a) stationary object, and (b) an object in uniform motion.
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t(s) =

Fig. 3.3 Position-time graph of a car.
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Now, let us consider the motion of a car that
starts from rest at time t = 0 s from the origin O
and picks up speed till t = 10 s and thereafter
moves with uniform speed till t = 18 s. Then the
brakes are applied and the. car stops at
t =20 s and x= 296 m. The position-time graph
for this case is shown in Fig. 3.3. We shall refer
to this graph in our discussion in the following
sections.

3.3 AVERAGE VELOCITY AND AVERAGE
SPEED

When an object is in motion, its position
changes with time. But how fast is the position

changing with time and in what direction? To '

describe this, we define the quantity average

velocity. Average velocity is defined as the
_?F%_‘posltion or displacement (Ax divided

by the time intervals (At). in which the

displacement occurs : i
= - Ax - .
A vk DY o4 . B
t-1, At 1Yl L SN

where x, and x, are the positions of the object
at time t,and t, respectively. Here the bar gver
the symbeol for velocity is a standard notation
used to indicate an average quantity. The SI
unit for velocity is m/s or m s, although km h!
is used in many everyday applications.

Like displacement, average velocity is also a
vector quantity. But as explained earlier, for
motion in a straight line, the directional aspect
of the vector can be taken care of by + and -
signs and we do not have to use the vector
notation for velocity in this chapter.

45 -

| 401

x(m)

o 1 2 3 4 5 6 7 8
t(s)—

Fig. 3.4 The average velocity is the slope of line P P, -

l'li‘t'}:p-j

Consider the motion of the car in Fig. 3.3. The
portion of the x-t graph between t=0sand t=g
s is blown up and shown in Fig. 3.4. As seep,
from the plot, the average velocity of the car
between time t=5sand t=7sis:

(27.4-100)m

ta —t (7-5)s
Geometrically, this is the slope of the straight
line P P, connecting the initial position P‘ to
the final position P, as shown in Fig. 3.4.

The average velocity can be positive or negative
depending upon the sign of the displacement. It
is zero if the displacement is zero. Fig. 3.5 shows
the x-t graphs for an object, moving with positive
velocity (Fig. 3.5a). moving with negative velocity
(Fig. 3.5b) and at rest (Fig. 3.5¢).

T\/ t t
. . x'__'f .
ol J\ 0

— . t—
(a) (b) ' (c)y
Fig. 3.5 Position-time graph for an object (aJj
with positive velocity. (b) movin
negative velocity, and (c] attest.

Xg =Xy

v= =8.7ms"}

Average velocity as defined above involvess
only the displacement of the object. We have seen
earlier that the magnitude of displacement may
be different from the actual path length. To
describe the rate of motion over the actual path.
we introduce another quantity called average
speed. : s

Average speed is defined as the total path
length travelled divided by the total time
interval during which the motion has taken
place :

. (3.2)

Average speed has abviougly the same unit
(m s') as that of velocity. But it does not tell us *
in what direction an object is moving. Thus, it
is always positive (in contrast to the average
velocity which can be positive or negative). If the
motion of an object is along a straight line-and:

in the same direction, the magnitude of
displacement is equal {o the total path length. =
In that case, the magnitude of average velocity
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is equal to the average speed. This is not alwéys
the case, as you will see in the following example.

Example 3.1 A car is movihg along a
straight line. say OP in Fig. 3.1. It moves

. fromOtoPin18s and returns from P to Q
in 6.0 s. What are the average velocity
and average speed of the car in going (a)
from O to P ? and (b) from O to P and back
toQ?

Answer (@) .
o velocity Displacement
. Average velocily = - .

- Time interval

+ 360 m
18s

Path length
Time interval

v= =+20m s

]

Average speed =

=20ms!

Thus, in this case the average speed is equal to
the magnitude of the average velocity.
(b) In this case,

.. _ Displacement +240 m
Average velocity = =
Y Timeinterval ~ (18+6.0) s
=+10 ms™
Aberage speed = -Path length _OP+PQ

Time interval At
_(360+120) m 5
= v =20ms
Thus, in this case the average speed is not equal
;0 the magnitude of the average velocity. This
appens because the motion here involves
change in direction so that the path length is
%ei:ter than the magnitude of displacement.

3.4 INSTANTANEOUS VELOCITY AND SPEED

The average velocity tells us-how fast an object
has been moving over a given time interval but
does not tell us how fast it moves at different
instants of time during that interval. For this,
we define instantaneous velocity or simply
velocity v at an instant .

The velocity. at-an instant is_defined as the
limit of the average velocity as the time interval
Atbecomes infinitesimally small. In other words,

Ax
v= lim — (333]
At - 0 At
. B : (3.3b)
dt
where the symbol m  stands for the operation

of taking limit as’ at-0 of the quantity on its
right. In the language of calculus, the quantity
on the right hand side of Eq. (3.3a) is the
differential coefficient of x with respect to t and

i dx
is denoted by e (see Appendix 3.1). It is the

rate of change of position with respect to time,
at that instant.

We can use Eq. (3.3a) for obtaining the value
of velocity at an instant either graphically or
numerically. Suppose that we want to obtain

~ graphically the value of velocity at time t=4s

(point P) for the motion of the car represented
in Fig. 3.3. The figure has been redrawn in
Fig. 3.6 choosing different scales to facilitate the

20 -

T1B-
16 -

X(m

( )14~

124°

L g L

35 4 45 5 55 6
ts) —

2 253

Fig. 3.6 DPetermining velocity from position-time

graph. Velocity at t = 4 s'is the slope of the
tangent to the graph at that instant.
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calculation. Let us take At = 2 s centred at
t = 4 s. Then, by the definition of the average
velocity. the slope of line P,P, ( Fig. 3.6) gives
the value of average velocity over the interval
3 sto5s. Now, we decrease the value of At from
2sto 1 s. Then line P,P, becomes Q,Q, and its
slope gives the value of the average velocity over
the interval 3.5 s to 4.5 s. In the limit At = O,
the line P P, becomes tangent to-the position-
time curve at the point P and the velocity at t=
4 s is given by the slope of the tangent at that
point. It is difficult to show this process
graphically. But if we use numerical method
to obtain the value of the velocity, the
meaning of the limiting process becomes
clear. For the graph shown in
Fig. 3.6, x=0.08 . Table 3.1 gives the value of
Ax/At calculated for Atequal to 2.0s, 1.0, 0.5
s, 0.1 s and 0.01 s centred at t = 4.0 s. The
second and third columns give the value of t,=

[ At
I — —
2

the fifth columns give the corresponding values

At
and t, =[f+—2"] and the fourth and

of x. i.e. x(t) =0.08 t and x (t) = 0.08 ¢..
sixth column lists the difference Ax = x ('tz]

(t,) and the last column gives the ratio of Axand
At. i.e. the average velocity corresponding to the
value of At listed in the first column.

We see from Table 3.1 that as we decrease
the value of At from 2.0 s t0 0.010 s, the value of
the average velocity approaches the limiting
value 3.84 m s! which is the value of velocity at

dx
t= 4.0 s, i.e. the value of 3 att= 4.0 s. In this

manner, we can calculate velocity at each

Table 3.1 Limiting value of % att=4s

_ 3.0 5.0 2.16 100
1.0 35 49_ & 343
0.5 3.75 %-.agzzs_ f_ 421875 | 6.1
0.1 3.95 ,A.osi; 4.93039 # ’fﬁ
0.01 3.995 1.005 5.100824

.

1-”\‘ ,‘ _j
gy

instant for motion of the car shown in pr.
For this case, the variation of velocity v Fig, 3 d
is found to be as shown in Fig. 3.7, th

30 1
| =

m/
bt s)m

15 -
10 1
5.

0 —r T '
0 2 4 6 81012141313'

t(s) —
Fig. 3.7 Velocity—ttme graph corresponding to motgy
shown in Fig. 3.3.
The graphical method for the determinatig
of the instantaneous velocity is always noty
convenient method. For this, we must carefully
plot the position-time graph and calculate the
value of average velocity as At becomes sma If
and smaller. It is easier to calculate the v
of velocity at different instants if we have data
of positions at different instants or exa
expression for the position as a function of time
Then, we calculate Ax/At from the data fj
decreasing the value of At and find the limiting
value as we have done in Table 3.1 or us
differential calculus for the given éxpression and
dx .
calculate -c_l—t- at different instants as done itli

the following example.

{.

)

LAt x(t))
(s) (m)
2.0

(m)




= 1e3.2 The position o]*q\n ob/]é}
3 ! long X-axis is givenby x=d+ bt?

a o
movg A p=25ms?and tis
ured in seconds. What is its velocity at
t=2.0s. Whatis the average
nt=20s andt=4.0s7?

[n notation of differential calculus, the

velocity 15
dx d
=——=’_a+
"7 dt dt(
At t=0s.

u'= ]0m5'] *

pi®)=2bt=50tms"

p=0ms’ and at t=2.0s,
x(4.0)- x(2.0)

4.0-2.0 -
a+16b-a-4b’
— 20 = 6.0xb

-6.0x2.5=15ms" <
7. we note that during the period

Average velocity =

From Fig. 3.

t=10sto 188
period =18 s to t = 20 s, it 1s uniformly

Jecreasing and during the period t=0s to 't
- 10 s, it is increasing. Note that for uniform

motion, velocity is the same as : e

speed or simply s eed is the

taneous

Wf |
+2Z0ms" an avelocityof—24.0ms*‘——bo§1
MWMM;
be noted that thoughrav gover a finite
interval of time_is greater Of equal to _the
magnitude _of _the average velocity,
 istantaneois speed at an instant s edual 1o
the mAgMItHAE D TStantar €ous velocity at
thatinstant WEy 507 I
3.6 ACCELERATION

'([lhe velocity of an ebject, in- general, changes
uring its course of motion. How to describe this
,  change? Stiould 1t be described as the rate of
mschangc in velocity with distance or with time ?
wm blem | ileg’ e. It was

by gt t this change could be described
But, of change of velocity with distance.

oby mﬂ“ °and“ﬂl his studies of motion of freely falling
ane motion of objects on an inclined

of vele Galfleo concluded that the rate of change
of motion lor

bjects-qr free-fall-Onthe-other hand, the
ANGE I Velerty it o
16¢ity with distance is not constant

the velocity ig constant. Between

This led to the concepl of acceleration as the rate

of change of velocity with time.
The average acccleration a over a time
interval is defined as the change of velocity
divided by the time interval :
Av

— U=V
a = 2 ) il
t,-t, Al (3.4)
where v, and v, are the instantaneous velocities
. It is the

-or simply velocities at time t,and t,
average change of velocity per unit time. The SI

unit of acceleration is m B .
On a plot of velocily versus time, the average

acceleration is the slope of the straight line
connecting the points corresponding to (v, &)
and (v,, t). The average acceleration
for velocity-time graph shown in Fig. 3.7 for
different time intervals 0s-10s, 10s-18s,
and 18 s-20s are:

=1 .
(24-0)mS  _54ms*

a-.

_ (24-24)ms’ =
_ a= —_— = O ms
_ (0-24)ms’ "
) a= =-12ms
18 s 20 s (20—18)5
—J' 4.8 .
24— ~ ;
= 0 T 1 . T
24 2.4 68101214 16 18 40 22
Blasd -~ ‘ . t (s>
S 73
" 9.0
-12.0

Fig. 3.8 Accelerationasa function of time for motion
represented in Fig. 3.3:
Instantaneous acceleration is defined in the same
way as the instantaneous velocity :
a=lim e dv .
at-0 At dt
The acceleration at an instant is the slope of
the-p=T Glirve shown in Fig. 3.7, we can obtain
dcceleration at every instant of time. The
resulting a-tcurveis shown

(3.5)

in Fig. 3.8. We se¢

~ltdec, lista
- {Eereases with the increasing distance of Tl

-

-
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that the acceleration is nonuniform over the
period O s to 10 s. It is zero between 10 s an(l
18 s and is constant with value -12 m s
between 18 s and 20 s. When the acceleration
is uniform, obviously, it equals the average
acceleration over that period.

Since velocity is a quantity having both
magnitude and direction, a change in velocity
may involve either or both of these factors.
Acceleration, therefore, may result from a
change in speed (magnitude), a change in
direction or changes in both. Like velocity,
acceleratj ositive,. negative or
zero. Position-time graphs for motion with
POSItive, negative and zero acceleration are
shown in Figs. 3.9 (a). (b) and (c), respectively.
Note that the graph curves upward for positive
acceleration; downward for negative
acceleration and it is a straight line for zero

acceleration. As an exercise, identify in Fig. 3.3,
the regions of the curve that correspond to these
three cases. :

Although acceleration can vary with time,
our study in this chapter will be restricted to
motion with constant acceleration. In this case,
the average acceleration equals the constant
value of acceleration during the interval. If the
velocity of an object is v at t=0and vat time t,

we have
a=2""% or, v=v, +at (3.6
— t _0 L] 0 i . ]
4| Positive a 4| Negative a tl a=o0
(a) (b) (c)

Fig. 3.9 Position-time graph for motion with
(a) positive acceleration; (b) negative
acceleration, and (c) zero acceleration.

Let us see how velocity-time graph looks like
for some simple cases. Fig. 3.10 shows velocity-
time graph for motioni with constant acceleration
for the-following cases :

(a) An object is moving in a positive direction
with a positive acceleration, for example
the motion of the car in Fig. 3.3 between
t=0sandt= 10s.

) An object is moving in POsitive
with a negative acceleration, fo M

motion of the car in Fig 3.3 i":n%.
t=18s and 20 s. t‘veq,

(c) An object is moving in negatjye dir
with a negative acceleration, for Clio
the motion of a car moving from gx;mble |
3.1 in negative X-directign ﬂ&
increasing speed. With

(d) An object is moving in positive direcy,
till time t,, and then turns back with % 4
same negative acceleration, for te
the motion of a car from point O to Poiny
Q in Fig. 3.1 till time t, with decregg;
speed and turning back and movin
the same negative acceleration.

An interesting feature of a velocity-time !
for any moving object is that the area under th,
curve represents the displacement over,
given time interval. A general proof of th §.

r

D T

~~
(=

(©) @

Fig. 3.10 Velocity-time graph for motions "
constant acceleration. (a) Motion in P&
direction with positive accelere ‘,T}
(b) Motion in positive direction "=
negative acceleration, (c) Motion i nede
direction with negative acceler®
(d) Motion of an object with Ny
acceleration that changes dir e"m,',nppes

L. Between times O to t,, ilS ¢ af

Positive x - direction and betweer 1

L, it moves in the opposite directio™
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staterﬂent requires use of calculus. We can,
however, see that it is true for the simple case of

"an object moving with constant velocity wu. Its
velocity-time graph is as shown in Fig. 3.11.

1

v

U

0= T t—

Fig. 3.11 Area under v-t curve equals displacement
of the object quer a given time interval.

The v-t curve is a straight line parallel to the

time axis and the area under it between t = 0

and t = T is the area of the rectangle of height u
‘and base T. Therefore, area = ux T = uT which
is the displacement in this time interval. How
come in this case an area is equal to a distance?
Think! - Note the dimensions of quantities on
the two coordinate axes, and you will arrive at
the answer. '

Note that the x-t, v-t, and a-t graphs shown
in several figures in this chapter have sharp
kinks at some points implying that the
functions are not differentiable at these

points. In any realistic situation, the:

functions will be differentiable at all points
_and the graphs will be smooth.

What this means physically is that
acceleration and velocity cannot change
values abruptly at an instant. Changes are
always continuous. ; 5 s

3.6 KINEMATIC EQUATIONS
-UNIFORMLY ACCELERATED MOTION

For uniformly accelerated motion, we can derive
S0me simple equations that relate displacement
‘ 0d, time taken (8), initial velocity (v,), final

velocity () and acceleration (a). Equation (3.6)

5 Y_thained gives a relation between final
a in1|J_alvelocities_ vand v, of an object moving
uniform acceleration a : s

(3.6)
'%lu: ;‘:aﬁon I8 graphically represented jn Fig, 3.12.
Arey betwl;nder this curve is :

AB €N instants 0 and t = Area of triangle .
€+ Area of rectangle OACD

B

FOR

. | . 47"

= %(U+Uo)t +v,t

o t—

Fig. 3.12 Area under v-t curve for an object with

uniform acceleration. ' :

As explained in the previous section, the area
under v-t curve represents the displacement.
Therefore, the displacement x of the object is :

x = %(r;;;vo)t +vt

(3.7)
‘But v-v,=at ' el A
4 . 1 : A T N3
Therefore, x = S a t +u,t b

-—_~__———
Equation (3.7) can also be written as -
v+ =
= Ot=vt (3.92)
2 .
where, fina @€ A,
ol 2 ;
5 _ U+ Vg

(constant acceleration only)

(3.9b)

Equations (3.9a) and (3.9b) mean that the object
has undergone displacement x with an average

_ velocity equal to the arithmetic average of the

initial and final velocities.

"From Eq. (3.6), t = (v-uv,) /a. Substituting this in
Eq. (3.9a), we get ' '

I (= A
2 a 2a

(8.10)
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This equation can also be oblained by
substituting the value of t from Eq. (3.6) into
Eq. (3.8). Thus. we have obtained three
important equations :

U=y, +al
1

x = pot + —at?
2

v =0} +2ax (3.11a)

connecting five quantities v,. v, a. tand x. These
are kinematic equations of rectilinear motion
for constant acceleration.

The set of Eq. (3.11a) were obtained by
assuming that at t = 0. the position of the
particle, xis 0. We can obtain a more general
equation if we take the position coordinate at ¢
= 0 as non-zero, say x,. Then Egs. (3.11a) are
modified (replacing xby x- x ) to :

U=y, +at
X = Xg + Ut + %aﬁ (3.1 lbjl
v? = v +2alx - xp) (3.11¢)

Example 3.3 Obtain equations of motion
for constant acceleration using method of
calculus. :

Answer By definition

g=S2
dt
dv=adt

Integrating both sides
[fdv = [la at
<Lb 0

r
=afodt (a is constant)
v-y,=at
v=y, +at
bo9x
Further, =ar
dx=vdt
Integrating both sides
J' dx =I ‘v dt
xg 0

= I;(Uo + at) d¢

X — Xy =, t+%a t?

X = Xg+Uy t+—;—at2

We can write

~or, vdv=adx
Integrating both sides,

j;udv = I;adx

v? -v
2
v2=u§+2a_(x—xo) 5
The advantage of this method is that it can
used for motion with non-uniform accele ati
also.

Now, we shall use these equations to
important cases.

= a(x-x,)

P> Example 3.4 A ball is thrown vertica
upwards with a velocity of 20 m s fro
the top of a multistorey building. Tﬁf
height of the point from where the ballkg
thrown is 25.0 m from the ground. (a) H
high will the ball rise ? and (b) how lonj
will it be before the ball -hits the groun
Take g=10m s?2

%

Answer (a) Let us take the y-axis lm
vertically upward direction with zero at.
ground, as shown in Fig. 3.13. |
Now v =+20ms,
a=-g=-10ms?2
v =0ms!
If the ball rises to height y from the polf

launch, then using the equation
2

V= vg-+2 a (y—yo)
we get
0=1(20% + 2-10)(y - y)
Solving, we get, (y -y, = 20 m.
(b) We can solve this part of the problem .
ways. Note carefully the methods used
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—
i

-

=-10 m/s?
25

A _‘
e

Fig. 3.13

FIRST METHOD : In the first method, we split
the path in two parts : the upward motion (A to
B) and the downward motion (B to C) and
calculate the corresponding time taken t and
t,. Since the velocity at B is zero, we have :
v=uy+at

0=20 -10t,

-Or, t=2s

This is the time in going from A to B. From B, or

the point of the maximum height, the ball falls

freely under the acceleration due to gravity. The

ball is moving in negative y direction. We use
equation

| y=y0+v(,t+%at2 _
We have, y =45m, y=0,v,=0,a=-g =-10m s
0 =45+ (%) (-10) 2 -
Solving,wegett2=3s

Therefore, the total time taken by the ball before
ithltstheground=' t+t, =2s+3s=5s.

SECOND METHOD : The total time taken can
also be calculated by noting the coordinates of

 Initial and fina] positions of the ball with respect
to the origin chosen and using equation

Now y =25
U°= 20!11 S'l,

8

0=25 4+20¢ + (%2) (-10) ¢2
Or. 52-20t-25 = 0

Solving this quadratic equation for t, we get
L=5s

Note that the second method is better sihce we
ITy about the path of the motion
| under constant acceleration.

<

P Example 3.5 ‘Free-fall : Discuss the

motion of an object under free fal]. Neglect
air resistance,

Answer An object released near the surface of
the Earth is accelerated downward under the
influence of the force of gravity. The magnitude
of acceleration due to gravity is represented by
g. If air resistance is neglected, the object is
said to be in free fall. If the height through
which the object falls is small compared to the
earth’s radius, g can be taken to be constant,
equal to 9.8 m s2. Free fall is thus a_case of
motion with uniform acceleration.

~ We assume that the motion is in y-direction,
more correctly in -y-direction because we
choose upward direction as positive. Since the

 acceleration due to gravity is always downward,

it is in the negative direction and we have
a=-g =-9.8ms?

The object is released from rest at y= 0. Therefore,

v, = 0 and the equations of motion become:

v=0-gt =-9.8t ms'
y=0-% gt =—49t> m
¥=0-29gy =-19.6y m?s?

These equations -give the velocity and the
distance travelled as a function of time and also
the variation of velocity with distance. The

.variation of acceleration, velocity, and distance,

with time have been plotted in Fig. 3.14(a), (b)
and (c). - ‘
0 1" 2 H(s)—

) [ -

9.8 m/s’
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0 > ‘(S')’_’_ traversed during successive j 3
time. Since initial velocit nlervag o
1 2 3 4 5 ocity is zerg of
-10 1 1 e hay,
- 2 o
.20 4 ‘ Y 2 gt
. Using this equation, we can calculate
position of the object after different y e
e 3 intervals, 0, T, 2T, 3T... which are glven'
v second column of Table 3.2. If we tq.
(“"")60 J (-1/2) gt*as y,— the position coordinate
~ first time interval T, then third column g 3
(b) the positions in the unit of y,_. The foury
~ column gives the distances traversed IH
t(s)— . successive Ts. We find that the distances arp
_12 ; N - p in the simple ratio 1: 3: 5: 7: 9: 11... as sho ,
20 , in the last column. This law was establisheq
o - by Galileo Galilei (1 564-1642) who was the first
401 to make quantitative studies of free fall. [
) : » Example 3.7 Stopping distance
oS P vehicles : When brakes are applied
% oo moving vehicle, the distance it travels.be
(m) god stopping is called stopping distance. [
an important ‘factor for road safety am
() depends on the initial velocity (v)) and.
. . . ' " braking capacity, or deceleration. —a
Fig. 3.14 (l:zl}ot‘;on_ OI:gfgf.cisl:f_a‘;i’;ﬁelL{g‘;gnﬁau' is caugs'ed byt)trhe braking. Derive:
(b) Variation of velocity with time. : .| expression for stopping distance of 2 veli
(c) Variation of distance with time | in terms of v, and @
M? _13.’: dg;zlrlulc:so trsay.l:era:ed?f ofid Answer Let the distance travelled by the vehicl
| intervals _of time, by a body fe allingg befo_re it stops be d_. Then, usilig equation of =
Jfrom rest, stand to one another in the same motioni-y* =1, +2 ax, and noting that vz 018 .
ratio as the odd numbers beginning with have the stopping distance "k
unify [namely, 1: 3: 5: 7......]." Proveit. L2 '
- — 0
Answer Let us divide the time interval of %= Za : ‘
motion of an object under free fall into many Thus, the stopping distagge_js..proportiODM-
equal intervals T and find out the distances  the squwﬂfﬂ?ﬁ@ociw. Doubling the
Table 3.2 = .
Yy in terms of
Yy, [=(- %) g ']
~
o~
O (1/2) g+ R ' : 1 i
X £ Oy -411/2]:#@.’% Bk g3y . 3 e .
3y JeEees . -0(1/2) Ele MG . -
t P 1t -16(1/2) gV BB :7' —
.3 51 SEaeh -25(1/2)8 7 X 9 -
6y . -8e/2gv : ot
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initial velocity increases the stopping distance
by a factor of 4 (for the same deceleration).

For the car of a particular make, the braking
distance was found tobe 10 m, 20 m, 34 m and
50 m corresponding to velocities of 11, 15, 20
and 25 m/s which are nearly consistent with
the above formula.

Stopping distance is an important factor
considered in setting speed limits, for example,
in school zones. <

FExamPle 3.8 'Reaction time : When 2

situation demands our immediate
action; it takes some time before we
really.respond. Reaction tinﬁmis the
time a person takes to observe, (hink

affd gct. FOT example, 1I a person is
Jﬁ(r]_ﬁg and suddenly a boy appears on
the road, then the time elapsed before
he slams the brakes of the car is the
reaction time. Reaction time depends
on complexity of the situation and on
an individual.

You can measure your reaction time
by a simple experiment. Take a ruler
and ask your friend to drop it vertically
through the gap between your thumb
and forefinger (Fig. 3.15). After you
catch it find the distance d travelled
by the ruler. In a particular case, d was
found to be 21.0 em. Estimate reaction
time.

Fig. 3.15 Measuring the reaction time.

Answer The

.Therefore‘ v = ruler drops under free fall.

0, and aA=-9g=-9.8ms?2 The

, relatedci ;l'avelled d and the reaction time t are
PNy
—Y
& Cf‘»;/‘

M,

bl

I,
d=-—qgt?
294

2d

Ol'. tr'_‘ —8

Given d=21.0 cm and g £ 9.8 m s%the reaction
time is

t,=1/2x9(?'821 s=0.2s. 4

3.7 RELATIVE VELOCITY

You must be familiar with the experience of
travelling in a train and being overtaken by
another train moving in the same direction as
you are. While that train must be travelling faster
than you to be able to pass you, it does seem
slower to you than it would be to someone
standing on the ground and watching both the
trains. In case both the trains have the same
velocity with respect to the ground, then to you
the other train would seem to be not moving at
all. To understand such observations, we now
introduce the concept of relative velocity.

Consider two objects A and B moving
uniformly with average velocities v, and v, in
one dimension, say along x-axis. (Unless
otherwise specified, the velocities mentioned in
this chapter are measured with reference to the
ground). If x, (0) and X (0) are positions of objects
Aand B, respectively at time t= 0, their positions
x, () and X, (1) at time t are given by:

x,(t) = x,(0) + v, t (3.12a)

X (0 = x, (0) + vt (8.12b)
Then, the displacement from object A to object
B is given by

Xea® = 3,0 - x, (O

=[x 0 -x,0)]+(@v,-v)t. (3.13)

"Equation (3.13) is easily interpreted. It tells us

that as seen from object A, object B has a
velocity v, - v, because the displacement from
Ato B changes steadily by the amount v,-v,in
each unit of time. We say that the velocity of
object B relative to.object A is Py — U,

Ups = U, -1, (3.14a)

Similarly, velocity of object A relative to object B
is: '

Upp = Uy~ Uy

. (3.14b)
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Fig. 3.16 Position-time graphs of two object[g)with

equal velocities. 5 t
This shows: U (8.14¢)

Now we consider some special cases :
@Ifv,=v, v,-v, =0. Then, from Eq. (3.13), x, ]‘
9 - x, (0= x; (0) - x, (0). Therefore, the two

objects stay at a constant distance (xg (0) - x,

(0)) apart, and their position-time graphs are Xm) g

straight lines parallel to each other as shown

in Fig. 3.16. The relative velocity Uy OT U, is
zero in this case.

®) I v, > v, Vg — U, is negative. One graph is
steeper than the other and they meet at a
common point. For example, suppose v, =20ms?!
and x, (0) = 10 m; and v, = 10 m s, x, (0) = 40
m; then the time at which they meetis t=3 s

-0 -
(Fig. 3.17). At this instant they are both at a  Fig. 3.18 Position-time graphs of two objecs™®
position x, (§ = x; () = 70 m. Thus, object A i

overtakes object B at this time. In this case, Vo
=10ms'-20ms!=-10ms!=- Uppr

Us)—_
Fig. 3.17 Position-time graphs of o

tu,o ODje
unequal velocities, Showing gh, ¢
meeting. :

120 4

A
100

60 -
40 1

20 1

= CETE

velocities in opposite directions,
the time of meeting.

(c) Suppose v, and U, are of opposite signs. For
example, if in the above example object A is
moving with 20 m s™! starting at x,(0) =10 m

speed of 54 km h™!, and train B mOVefh 1
with a speed of 90 km h™'. What ii
and object B is moving with - 10 m s starting (a) velocity of B with respect to A “
at x;, (0) = 40 m, the two objects meet at t=1 s (b) velocity of ground with respec 4
(Fig. 3.18). The velocity of B relative to A, and ing on
‘. Vpa=1-10-(20) ms'=-30 ms'=- U,p- In this (c) velocity of a monkey r'un?ﬁls mofid
F case, the magnitude of Vg, Or v, (=30m s is roof of the train A against 2= .
/ greater than the magnitude of velocity of A or

that of B. If the objects under consideration are
two trains, then for a person sitting on either of

‘ Example 3.9 Two parallel rail trac}v(zls "
north-south. Train A moves north witt

s h :
(with a velocity of 18\krgseﬁ"d’
respect to the train A) as ©

ol
a man standing on the &
the two, the other train seems to go very fast.

nd ?{—_

Note that Eq. (3.14) are valid even if v, and v,

directio? o
Answer Choose the positive o)
represent instantaneous velocities. to be from south to north. Th

R/

Ab )5\\‘\/[ !\
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yw +B4kmh = 16 m s B=0-y,=26ms,

-90kmh™! = -26 m s’
% = » In (c), let the velocity of the monkey with respect

elative velocity of Bwith respectto Am v -y 4 ground be u,,. Relative velocity of the monkey
10 m p! , L the train B appears to A to move with mspect to A,

=1
ith a speed of 40 m s*! from north to south. Uya = Uy - Uy =-18 km h' =-5 ms™'. Therefore,
elative velocity of ground with respect to vy, =(15-5)ms'=10ms".

SUMMARY

1. An object i8 said to be in motion if its position changes with time. The position of the
object can be specified with reference to a conveniently chosen origin. For motion in
a straight line, position to the right of the origin is taken as positive and to the left as
negative,

Path length 1s defined as the total length of the path traversed by an object.
Displacement is the change in position : Ax = x,- x,. Path length is greater or equal to
the magnitude of the displacement between the same points.

An object is said to be in un{form motion in a straight line if its displacement is equal
in equal intervals of time. Otherwise, the motion is said to be non-uniform.

Average velocity is the displacement divided by the time interval in which the
displacement occurs : ;

- Ax

v —

At
On an x-t graph, the average velocity over a time interval is the slope of the line
connecting the initial and final positions corresponding to that interval.

6. Average Speed is the ratio of total path length traversed and the corresponding time
interval.

The average speed of an object is greater or equal to the magnitude of the average
velocity over a given time interval.

7. Instantaneous velocity or simply velocity is defined as the limit of the average velocity as
the time interval At becomes infinitesimally small :

I Y

v=lim o= lim X - X
At=0 At-0 At dt

The velocity at a particular instant is equal to the slope of the tangent drawn on '
position-time graph at that instant.

8. Average acceleration is the change in velocity divided by the time interval during which
the change occurs :

- Av
a=—
At

9.
Instantaneous acceleration is defined as the limit of the average acceleration as the time
Interval At goes to zero : ’

a=lima-=lm 3%
A0 a0 At dt
Th
g,.:p:c::l:h“;:“m of an object at a particular time Is the slope of the velocity-time
graph is g instant of ime. For uniform motion, acceleration is zero and the x-t
straight line inclined to the time axis and the v-t graph is a straight line
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ne axis. For motion with uniform acceleration, x-
ght line inclined to the time axis.

der the velocity-time curve between times t, and ¢, is equal to
of the object during that interval of time.

pau'allel to the tir

t
while the v-t graph is a stral graph js , |

bog 1

1

the diSP]a‘ L

in uniformly accelerated rectilinear motion, the five quantitieg

The area un

11. For objects d
x. time taken t, initial velocity v, final velocity v and acceleration a are la _
of simple equations called kinematic equations of motion : relateq by :‘lsq;

v=yp,+ at i
2

2
v =ug+20x

if the position of the object at time t =

equations is replaced by (x — x,).

Physical
quantity
Path length

e | o=
19 5 m 35

0 is 0. If the particle starts at X =X, . X in abgy,

Displacement Ax L] m =X-X ‘
In one dimension, its sign
s indicates the direction.
Velocity =lE17] ms’ |
(a) Average n : £ Ax. '
At
(b) Instantaneous 5 - Hm o AX dx
T At—>0 At dt
I oné dimension, it8 sigf
indicates the directio™
Speed [LT"] _
@) Average _ _Pathlengh
= Time interval
(b) Instantaneous % dx
it
Acceleration LT m s>
{a) Average = Av
(b) Instantaneous a 3 Av _‘12
- lim —_—=
= at—> 08t gt it 57

In one dmﬁnﬂ;‘;&ﬁ@“
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— pOINTS TO PONDER

The path length traversed by an object between two points is, in general, not the same
as the magnitude of displacement. The displacement depends only on the end points;
the path length (as the name implies) depends on the actual path. In one dimension,
the two quantities are equal only if the object does not change its direction during the
course of motion. In all other cases, the path length is greater than the magnitude of

displacement.
[n view of point 1 above, the average speed of an object is greater than or equal to the
magnitude of the average velocity over a given time interval. The two are equal only if

the path length is equal to the magnitude of displacement.
The origin and the positive direction of an axis are a matter of choice. You should first
specify this choice before you assign signs to quantities like displacement, velocity
and acceleration.
If a particle is speeding up, acceleration is in the direction of velocity; if its speed is
decreasing, acceleration is in the direction opposite to that of the velocity. This
statement is independent of the choice of the origin and the axis.

The sign of acceleration does not tell us whether the particle’s speed is increasing or
decreasing. The sign of acceleration (as mentioned in point 3) depends on the choice
of the positive direction of the axis. - For example, if the vertically upward direction is
chosen to be the positive direction of the axis, the acceleration due to gravity is
negative. If a particle is falling under gravity, this acceleration, though negative,
results in increase in speed. For a particle thrown upward, the same negative
acceleration (of gravity) results in decrease in speed.

The zero velocity of a particle at any instant does not necessarily imply zero acceleration
at that instant. A particle may be momentarily at rest and yet have non-zero
acceleration. For example, a particle thrown up has zero velocity at its uppermost
point but the acceleration at that instant continues to be the acceleration due to

gravity.
In the kinematic equations of motion [Eq. (3.11)], the various quantities are algebraic,

i.e. they may be positive or negative. The equations are applicable in all situations
(for one dimensional motion with constant acceleration) provided the values of different
quantities are substituted in the equations with proper signs. :

The definitions of instantaneous velocity and acceleration (Egs. (3.3) and (3.5)) are
exact and are always correct while the kinematic equations (Eq. (3.11)) are true only
for motion in which the magnitude and the direction of acceleration are constant

during the course of motion.

3.1

’@)’s.z

EXERCISES

In which of the following examples of motion, can the body be considered

approximately a point object:
<13} raflway carriage moving without jerks between two stations.
M_monkey sitting on top of a man cycling smoothly on a circular track.

(c) a spinning cricket ball that turns sharply on hitting the ground.

(d) a tumbling beaker that has slipped off the edge of a table.

'gltt:) p&slgch-time 1gx-t) graphs for two children A and B returning from their school

eir homes P and Q respectively are shown in Fig. 3.

cuiries 15 the e e g. 3.19. Choose the correct

(a) fAYB) lives closer to the school than @A)
starts from the school earlier than @/A)
. Q walks faster than (B

A Al B reacl:‘;@e at the (same/dffferent) time

5 @ overtak n the road ce).
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Fig. 3.19 XS T yen U7
A woman starts from her home at 9.00 am. walks with 2 speed of 5 km h-lona
straight road up to her office 2.5 km away, stays at the office up to 5.00 pm, and
returns home by an auto with 2 speed of 25 km h—1. Choose suitable scales and
plot the x-t graph of her motion- ’
ina w lane takes 5 steps forward and 3 steps backward,
ackward, and so on- Each step is 1

A drunkard walking narro
5 steps forward and 3 steps b
his motion. Determine graphjcally

and otherwise how long the

Ajet airplan€ travelling at the speed of 500

at the speed of 1500 km h~1 relative to the jet plane.
latter with respect to an observer on the ground ? \§ &

with speed of 126 xm h~1is prought to 3

f the car (assumed

A car moving along & straight highway
What is the retardation o

stop within a distance of 200 m.
uniform), and how long does it take for the car to stop ?
'rwouamsAandBoﬂengmmo:neac el tracks With 2
uniform speed of 72 km h~1 in the same direction, with
B decides to overtake A and accelerates by 1 m s2. If after 50 s, the 81
brushes past the driver of A, what was the original distance be
On a two-lane road, car A is travelling with a speed of 36 km nL

ed of 54 m h~1 eacl At 2

B decide®

jm h~1 ejects jts products of combustion
What is the speed of the

certain instant, when the di
stance AB is equ
tov;\crlertake A before C does. What mjnimgm
a an accident ?
leaving
with 2 bus €9 ' the

either direction eve
direction A to B Tinkse Tminutes. A man cycling with 2 S5
his motion, and C'étiil;abusgoes past him every 18
hia motion, and every 6 min n the oppoets> HEC What 1s the
AMplayer peed (assumed constant) do the buses
(a) What s a ball upwards wi ity ;
(b) What is the direction of accel th an initial speed of 29.% 70 i pall
are the veloct eration during the upward motion of the
” émﬂon 2 ty and acceleration of the ball at the hlghegt u‘lt of 1”_
ose the x = Om ’
highes and t =
x-axis tal:,odm'" vertically fiJw?f to be the location and time of the at lﬁ;_
during its upg'" the signs of ;’0";‘; direction to be the positive ”"'l’,;il
(d) To what height doe and downward on, velocity and acceleration the
Phyﬂ'ﬂhands7rraku:°bannaeanmn'
g=9.8ms?and ;ho“’ long does the ball r¢
eglect air resistance)-
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t;m:::adot::ach stf'itement below carefully and state with reasons and examples, if it is

A cle in one-dimensional motion
with-zero speed at an instant may have non-zero acceleration at that instant o
(b) zero speed may have non-zero velocity, X
th constant speed must have zero acceleration,
d) with positive value of acceleration must be speeding upy
A ball is dropped from a height of 90 m on a floor. At each collision with the floor,

the ball loses one tenth of its speed. Plot the speed-time graph of its motion
tween t=0to 12 s.

3 Exp) clearly, with examples, the distinction between :
de of displacement (sometimes called distance) over an interval of time,
(b

A2

the total length of path covered by a particle over the same interyal;
tude of average velocity over an interval of time, and the average speed
over the same interval. [Average speed of a particle over an interval pf time is
defined as the total path length divided by the time interval]. Sho
and (b) that the second quantity is either greater than or eq

en is the equality sign true ? [For simplicity, consider one-dimensional
motion only]. N\

A4 A man walks on a straight road from his home to a market 2.5 km away with a
}Pe;‘?‘ 5kmhl, Finding the market closed, he instantly turns and walks back
wi

speed of 7.5 km h™1. What is the
tude of average velocity, and
verage speed of the man over the interval of time (i) 0 to 30 min, (i) O to
50 min, (iii) O to 40 min ? [Note: You will appreciate from this exercise why it
is better to define average speed as total path length divided by time, and not
as magnitude of average velocity. You would not like to tell the tired man on
. his return home that his average speed was zero !]

5 InExercises 3.13 and 3.14, we have carefully distinguished between average speed
and magnitude of average velocity. No such distinction is necessary when we
consider instantaneous speed and magnitude of velocity. The instantaneous speed

always equal to the magnitude of instantaneous velocity. Why ?
3 Look at the graphs (a) to (d) (Fig. 3.20) carefully and state, with reasons, which of
these cannot possibly represent one-dimensional motion of a particle.

xlr\ : /P

Xe-® A
"27‘—@ 6 t \ -

A 4

J t

L

Speed - - Total path
Mength

AN AN i

] g VI \
| S ~ ) gt 1250
| ‘)ﬂ/ /t S’[_%leaglb \

Fig. 3.20
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3.18

Figure 3.21 shows the x-t plot of one-dimensional
motion of a particle. Is it correct to say from the
graph that the particle moves in a straight line for
t <0 and on a parabolic path for t >0 ? If not, suggest
a suitable physical context for this graph.

A police van moving on a highway with a speed of
30 km h! fires a bullet at a thief's car speeding away
in the same direction with a speed of 192 km h'. If

the muzzle speed of the bullet is 150 m s, with 0 N
what speed does the bullet hit the thief's car ? (Note: Fig. 3
Obtain that speed which is relevant for damaging g- 3.21

the thiefs car).

Suggest a suitable physical situation for each of the
following graphs (Fig 3.22):

‘}.'21

xﬂ\ a A
A
/\ ~ \ \ \1.‘ ~ ~
B~ O " &
(a) (b) (c)
Fig. 3.22

Figure 3.23 gives the x-

t plot of a particle executing one-dimensional simple
harmonic motion. (You

will learn about this motion in more detail in Chapterl4).

Give the signs of position, velocity and acceleration variables of the particle at
t=0.3s,12s,-12s.
\
.
2

L
i o

¥
;\/Ill/\o 1/\ v(\\ g

Fig. 3. -
] g. 3.23 A

Figure 3.24 gives the x-t plot of a
particle in one-dimensional motion, @

Three different equal intervals of time
are shown. In which interval is the
average speed gdreatest, and in which
is it the least ? Give the-sign of average
velocity for each interval.

Fig. 3.24
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m
\}/2{ Figure 3.25 gives a speed-time graph of
a particle in motion along a constant
direction. Three equal intervals of time
are shown. In which interval is the
average acceleration greatest in
magnitude ? In which interval is the
average speed greatest ? Choosing the
positive direction as the constant

—
direction of motion, give the signs of v t™
and a in the three intervals. What are
the accelerations at the points A, B, C
and D? I ?
’Y}_’r At %‘j\
. 2 = 4
Additional Exercises - J \

‘)As A three-wheeler starts from rest, accelerates uniformly with 1 m s2 on a straight <100
road for 10 s, and then moves with uniform velocity. Plot the distance covered by AN
the vehicle during the n* second (n = 1,2,3....) versus n. What do you expect this %
il:?kx be during accelerated motion : a straight line or a parabola ?

lyt’ oy standing on a stationary lift (open from above) throws a ball upwards with
the maximum initial speed he can, equal to 49 m s'. How much time does the ball

*  take to return to his hands? If the lift starts moving up with a uniform speed of
5 m s and the boy again throws the ball up with the maximum speed he can, how
long does the ball take to return to his hands ?

}2{ On a long horizontally moving belt (Fig. 3.26), a child runs to and fro with a speed
9kmh  (with respect to the belt) between his father and mother located 50 m apart
on the moving belt. The belt moves with a speed of 4 km h'. For an observer on a
stationary platform outside, what is the
(a)-speed of the child running in the direction of motion of the belt ?.

ﬁeed of the child running opposite to the direction of motion of the belt ?

( e taken by the child in (a) and (b) ? .

Which of the answers alter if motion is-viewed by one of the parents ?

Moving bélt —  +4km/h

-

Stationary observer
; ‘ Fig. 3.26
}16 '}\vo stones are thrown up simultaneously from the edge of a cliff 200 m high with
Initial speeds of 15 m s™' and 30 m s™. Verify that the graph shown in Fig. 3.27 _
correctly represents the time variation of the relative position of the second stone
With respect to the first. Neglect air resistance and assume that the stones do not

rebound after hitting the ground. Take g = 10 m s, Give the equations for the
linear and curved parts of the plot.
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}27 The ;%esedé%rtﬁng:hag:h:{ai CI; traversed by the particle between (@ t=0sto 10,

(b)t=2st063.

?
What is the average speed of the particle over the intervals in (a) and (b)

shown it
% The velocity-time graph of a particle in one-dimensional motion is
Fig. 3.29 :
ﬂ\
v

0 3] ty t
Fig. 3.29

Which of the following formulae are correct for describing the motion of the P‘rﬂ‘*
over the time-interval t to t;:
(@) xt,) =xit) + v (t) (t,—-t) +(¥) a (t,- P
i (b U{t=}=|)(t‘)+a_“’_tl)
i )
i \ aw—_- | _Ut' t,-t‘
ii \;)/xﬂ,) = Jdt,) L8 | A {tz— tl) + (Ya) Ao (t,— t,)’ : the doned e

Xg,) - xt,) = area under the v-t curve bounded by the t-axis and
shown.

L
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